Activity

  • McLain Pierce posted an update 3 months, 3 weeks ago

    The screening identified 13 hits whose knockdown inhibited the AQP2 accumulation in the plasma membrane. Amongst the candidates was the so far hardly characterized cyclin-dependent kinase 18 (CDK18). Our further analysis revealed a hitherto unrecognized signalosome comprising CDK18, an E3 ubiquitin ligase, STUB1 (CHIP), PKA and AQP2 that controls the localization and abundance of AQP2. CDK18 controls AQP2 through phosphorylation at serine 261 and STUB1-mediated ubiquitination. STUB1 functions as an A-kinase anchoring protein (AKAP) tethering PKA to the protein complex and bridging AQP2 and CDK18. The modulation of the protein complex may lead to novel concepts for the treatment of disorders which are caused or are associated with dysregulated AQP2 and for which a satisfactory treatment is not available, e.g., hyponatremia, liver cirrhosis, diabetes insipidus, ADPKD or heart failure.The aim of this study was to clarify degradation characteristics in each tissue of the knee complex of a medial meniscectomy (MMx)-induced knee osteoarthritis (KOA) animal model using classical methods and an alternative comprehensive evaluation method called contrast-enhanced X-ray micro-computed tomography (CEX-μCT), which was developed in the study. Surgical MMx was performed in the right knee joints of five male Wistar rats to induce KOA. At four weeks post-surgery, the synovitis was evaluated using quantitative polymerase chain reaction (qPCR). Degradations of the articular cartilage of the tibial plateau were evaluated using classical methods and CEX-μCT. Evaluation of the synovitis demonstrated significantly increased expression levels of inflammation-associated marker genes in MMx-treated knees compared with those in sham-treated knees. Evaluation of the articular cartilage using classical methods showed that MMx fully induced degradation of the cartilage. Evaluation using CEX-μCT showed that local areas of the medial cartilage of the tibial plateau were significantly reduced in MMx-treated knees compared with those in sham-treated knees. On the other hand, total cartilage volumes were significantly increased in MMx-treated knees. On the basis of the findings of this study, the method could be relevant to study new treatments in KOA research.In cultured human fibroblasts, SNAT transporters (System A) account for the accumulation of non-essential neutral amino acids, are adaptively up-regulated upon amino acid deprivation and play a major role in cell volume recovery upon hypertonic stress. No information is instead available on the expression and activity of SNAT transporters in human bone marrow mesenchymal stromal cells (MSC), although they are increasingly investigated for their staminal and immunomodulatory properties and used for several therapeutic applications. The uptake of glutamine and proline, two substrates of SNAT1 and SNAT2 transporters, was measured in primary human MSC and an MSC line. The amino acid analogue MeAIB, a specific substrate of these carriers, has been used to selectively inhibit SNAT-dependent transport of glutamine and, through its sodium-dependent transport, as an indicator of SNAT1/2 activity. SNAT1/2 expression and localization were assessed with RT-PCR and confocal microscopy, respectively. Cell volume was assessed from urea distribution space. In all these experiments, primary human fibroblasts were used as the positive control for SNAT expression and activity. MitoSOX Red research buy Compared with fibroblasts, MSC have a lower SNAT1 expression and hardly detectable membrane localization of both SNAT1 and SNAT2. Moreover, they exhibit no sodium-dependent MeAIB uptake or MeAIB-inhibitable glutamine transport, and exhibit a lower ability to accumulate glutamine and proline than fibroblasts. MSC exhibited an only marginal increase in MeAIB transport upon amino acid starvation and did not recover cell volume after hypertonic stress. In conclusion, the activity of SNAT transporters is low in human MSC. MSC adaptation to amino acid shortage is expected to rely on intracellular synthesis, given the absence of an effective up-regulation of the SNAT transporters.Mitotane is a steroidogenesis inhibitor and adrenolytic drug used for treatment of adrenocortical cancer (ACC). Mitotane therapy causes adrenal insufficiency requiring glucocorticoid replacement in all patients. However, it is unclear whether chronic therapy with mitotane induces complete destruction of zona fasciculata and whether hypothalamic-pituitary-adrenal (HPA) axis can recover after treatment cessation. Our objective was to assess the HPA axis recovery in a cohort of patients after cessation of adjuvant mitotane therapy for ACC. We retrospectively reviewed patient files with stage I-II-III ACC in two referral centers in Canada and Italy. Data on demographics, tumor characteristics, hormonal profile, and HPA axis were collected. Data from 23 patients with pathologically proven ACC treated with adjuvant mitotane for a minimum of two years were analyzed. Eight patients were males and 15 were females and the median age was 41 years old (range 18 to 73). After mitotane cessation, 18/23 (78.3%) patients achieved a complete HPA axis recovery while 3/23 (13.0%) were unable to tolerate glucocorticoid withdrawal despite having normal hormonal test values and 2/23 (8.7%) never achieved recovery. The mean time interval between mitotane cessation and HPA axis recovery was 2.7 years. A high proportion of patients achieved HPA axis recovery following cessation of mitotane adjuvant therapy. However, complete recovery was often delayed up to 2.5 years and regular assessment of the hormonal profile is required.In the past, the importance of serine to pathologic or physiologic anomalies was inadequately addressed. Omics research has significantly advanced in the last two decades, and metabolomic data of various tissues has finally brought serine metabolism to the forefront of metabolic research, primarily for its varied role throughout the central nervous system. The retina is one of the most complex neuronal tissues with a multitude of functions. Although recent studies have highlighted the importance of free serine and its derivatives to retinal homeostasis, currently few reviews exist that comprehensively analyze the topic. Here, we address this gap by emphasizing how and why the de novo production and demand for serine is exceptionally elevated in the retina. Many basic physiological functions of the retina require serine. Serine-derived sphingolipids and phosphatidylserine for phagocytosis by the retinal pigment epithelium (RPE) and neuronal crosstalk of the inner retina via D-serine require proper serine metabolism.

To Top