-
Mcdonald Goode posted an update 3 months, 3 weeks ago
Progesterone (P4) belongs to a factor that affects stress response and is a potential carcinogen, and saliva levels are expected to be a standard measurement for clinical diagnosis. In this study, a new type of nanoflower with both recognition functionality and catalytic substrate ability was prepared by copper phosphate, Pt/IrO2 nanocomposites (Pt/IrO2 NPs), streptavidin (SA) and horseradish peroxidase (HRP) via a one-pot co-precipitation strategy. Due to the enhanced catalytic activity and stability of Pt/IrO2@SA@HRP nanoflowers, we developed a powerful and sensitive multiple-catalysis ELISA to monitor progesterone in saliva. Multiple-catalysis ELISA based on a specific antibody and Pt/IrO2@SA@HRP nanoflowers exhibited a linear interval range from 0.217 ng mL-1 to 7.934 ng mL-1. The median inhibitory concentration (IC50) for progesterone is 1.311 ng mL-1 and the limit of detection (LOD = IC10) is 0.076 ng mL-1 in the proposed method. Satisfactory recoveries were in a range of 79.6-107% with an acceptable coefficient of variation (below 10.6%). Results of the multiple-catalysis ELISA and LC-MS/MS had a good coincidence. Our result unraveled that multiple-catalysis ELISA is a potentially serviceable tool for the detection of progesterone in saliva.Granular packings display the remarkable phenomenon of dilatancy, wherein their volume increases upon shear deformation. Conventional wisdom and previous results suggest that dilatancy, also being the related phenomenon of shear-induced jamming, requires frictional interactions. Here, we show that the occurrence of isotropic jamming densities φj above the minimal density (or the J-point density) φJ leads both to the emergence of shear-induced jamming and dilatancy in frictionless packings. Under constant pressure shear, the system evolves into a steady-state at sufficiently large strains, whose density only depends on the pressure and is insensitive to the initial jamming density φj. In the limit of vanishing pressure, the steady-state exhibits critical behavior at φJ. While packings with different φj values display equivalent scaling properties under compression, they exhibit striking differences in rheological behaviour under shear. The yield stress under constant volume shear increases discontinuously with density when φj > φJ, contrary to the continuous behaviour in generic packings that jam at φJ. Our results thus lead to a more coherent, generalised picture of jamming in frictionless packings, which also have important implications on how dilatancy is understood in the context of frictional granular matter.Europium and terbium doped layered gadolinium hydroxides were prepared by microwave assisted hydrothermal precipitation. They were subsequently exfoliated into nanosheets by sonication treatment in formamide. The thickness of the nanosheets (LGdHEu and LGdHTb) was found to be approximately 1 nm, exemplifying a single-layer feature. Multilayer and superlattice films were prepared through layer-by-layer (LbL) deposition of exfoliated hydroxide nanosheets with a polyanionic electrolyte (polystyrene sulfonate, PSS) and heteroassembly with semiconducting oxide nanosheets (Ti0.87O20.52- and TaO3-), respectively. Compared to the multilayers of (LGdHEu/PSS)n and (LGdHTb/PSS)n, the superlattices of (LGdHEu/Ti0.87O20.52-)n and (LGdHTb/TaO3-)n exhibited significantly enhanced photoluminescence intensity, ∼14 times and ∼5 times, respectively. The photoenergy absorbed by the semiconducting nanosheets can be transferred to the excited states of rare-earth hydroxide nanosheets for enhanced photoluminescence emission. Further investigation on the stacking sequence of the nanosheets revealed that direct neighboring and energy level matching with semiconducting nanosheets was essential for realizing efficient energy transfer across the nanosheet interface. Annealing at 600 °C could further enhance the emission intensity of the superlattice structured films. The current work demonstrates an important strategy for hetero-assembling nanosheets at the molecular level with a carefully designed interface for tunable and enhanced functionalities.Ligand-modified nanoparticles (NPs) have been widely used in oral drug delivery systems to promote endocytosis on intestinal epithelia. However, their transcytosis across the intestinal epithelia is still limited. Except for complex intracellular trafficking, recycling again from the apical sides into the intestinal lumen of the endocytosed NPs cannot be ignored. In this study, we modified NP surfaces with angiopep-2 (ANG) that targeted the low-density lipoprotein receptor-related protein 1 (LRP-1) expressed on the intestine to increase both the apical endocytosis and basolateral transcytosis of NPs. Notably, our finding revealed that ANG NPs could increase the apical expression and further basolateral redistribution of LRP-1 on Caco-2 cells, thus generating an apical-to-basolateral absorption pattern. Because of the enhanced transcytosis, insulin loaded ANG NPs possessed much stronger absorption efficiency and induced maximal blood glucose reduction to 61.46% in diabetic rats. Self-regulating the distribution of receptors on polarized intestine cells to promote basolateral transcytosis will provide promising insights for the rational design of oral delivery systems of protein/peptide drugs.Herein, we present a method to obtain particles composed of a segregated alloy of silver coated with gold. These particles are achieved through the controlled Ostwald ripening of small gold nanoparticles (NPs) on the surfaces of larger silver particles. The prepared segregated nanoalloyed colloids benefit from the advantages of gold and silver with none of their drawbacks. These platforms provide optical efficiencies which are superior to those of silver with the chemical resistance and biocompatibility of gold.Lipid bilayer vesicles have provided a window into the function and fundamental properties of cells. However, as is the case for most living and soft matter, vesicles do not remain still. CL-82198 cost This necessitates some microscopy experiments to include a preparatory immobilisation step. Here, we describe a straightforward method to immobilise giant unilamellar vesicles (GUVs) using zirconium-based metal-organic frameworks (MOFs) and demonstrate that GUVs bound in this way will stay in position on a timescale of minutes to hours.