Activity

  • Mcdonald Goode posted an update 3 months, 2 weeks ago

    Encephalitozoon cuniculi is a microsporidian which is frequently reported from rabbits. This microorganism can either ravage rabbit farms or transmit to humans from pet rabbits. This study aimed to investigate the prevalence and the genotype distribution of E. cuniculi among pet rabbits. In this study urine samples were collected from 50 pet rabbits, aged 2 months to 3 years, admitted to teaching veterinary hospital. Four races Lop, Dutch, Mix, and Angora were screened for E. cuniculi. The clinical symptoms were recorded and total DNA was extracted from urine samples. E. cuniculi was identified using amplification of the small subunit ribosomal RNA (ssu rRNA) gene and its genotypes were characterized using PCR/sequencing of the polar tube protein (PTP) gene. Phylogenetic tree was drawn to confirm the characterized genotypes. Out of 50 samples, 41 (82 %) of rabbits were asymptomatic, while nine (18 %) had at least one of symptoms including head-tilt, circling, and ataxia. A statistical correlation was seen between mean age + SD and symptoms (P-value = 0.039). The presence of E. cuniculi was confirmed in 16/50 (32 %) rabbits and all of them were identified as the genotype I. Our findings represented no consistency between E. cuniculi PCR – positive and the presence of symptoms (P-value = 0.318). Our results showed positive correlation between symptoms and age; however, the lack of correlation between PCR results with age may signify the latent infection in younger rabbits. All identified E. cuniculi were the genotype I, which is reported from rabbits and humans, highlighting the zoonotic concern for this genotype, particularly among subjects who keep pet rabbits.The only treatment available for end stage liver diseases is orthotopic liver transplantation. Although there is a big donor scarcity, many donor livers are discarded as they do not qualify for transplantation. Alternatively, decellularization of discarded livers can potentially render them transplantable upon recellularization and functional testing. The success of this approach will heavily depend on the quality of decellularized scaffolds which might show variability due to factors including age. Here we assessed the age-dependent differences in liver extracellular matrix (ECM) using rat and human livers. learn more We show that the liver matrix has higher collagen and glycosaminoglycan content and a lower growth factor content with age. Importantly, these changes lead to deterioration in primary hepatocyte function potentially due to ECM stiffening and integrin-dependent signal transduction. Overall, we show that ECM changes with age and these changes significantly affect cell function thus donor age should be considered as an important factor for bioengineering liver substitutes.The interaction of programmed cell death 1 ligand 1 (PD-L1) with its receptor, programmed cell death 1 (PD-1), inhibits T cell responses. Monoclonal antibodies that block this interaction have been shown effective as immunotherapy. However, only a subset of cancers exhibits a durable response to PD-1/PD-L1 blockade. Moreover, antibody-based immune checkpoint blockade is costly and is occasionally accompanied by systemic side effects. To overcome these limitations of antibody-based immune checkpoint blockade, an immune checkpoint-blocking ferritin nanocage displaying 24 PD-L1 binding peptides (PD-L1pep1) on its surface was designed and constructed. These ferritin nanocages displaying PD-L1pep1 (PpNF) specifically bind to PD-L1 expressed on cancer cells or to purified PD-L1 with a ~30 nM binding affinity. The addition of PpNF to co-cultures of T cells and cancer cells inhibited PD-1/PD-L1 interactions and restored T cell activities. In a mouse model of syngeneic colon cancer, PpNF specifically targeted tumors and showed antitumor activity. Moreover, PpNF nanocages encapsulating the chemotherapeutic drug doxorubicin had more potent antitumor activity than a monoclonal antibody against PD-L1. These results demonstrate that ferritin nanocages displaying surface PD-L1pep1 can be efficiently applied for immunotherapy, especially when encapsulating small chemotherapeutic drugs. These nanocages may have promise as an immunotherapeutic nanomedicine against various solid tumors.Canine influenza (CI) is a contagious respiratory disease in dogs, which poses a threat to canine health. A safe, high-yield vaccine seed virus is critical for CI vaccine development. We developed a PR8-based reassortant H3N2 canine influenza virus (RT CIV) using the reverse genetic method and evaluated its yield in canine kidney epithelial (MDCK) cells, Vero cells, and specific pathogen-free (SPF) chicken embryos. Mice and dogs were infected with RT CIV, and the pathogenicity was evaluated. The viral titers of RT CIV increased in MDCK cells, Vero cells, and SPF chicken embryos; the HA yield in SPF chicken embryos increased 4-fold. However, RT CIV was not lethal to mice, and it showed similar virulence as wild-type CIV. RT CIV also showed minimal pathogenicity in dogs, which manifested as mild fever and rhinorrhea for the first two days post-infection. Thus, RT CIV carrying the internal gene cassette from PR8 showed almost no pathogenicity in dogs. And the reassortant virus inactivated vaccine could provide complete protection against H3N2 CIV. To our knowledge, this is the first report on the pathogenicity of PR8-based reassortant H3N2 CIV in dogs. These studies are relevant for developing a high-yield and safe CI vaccine.Hepatitis B virus (HBV) is a major cause of liver disease in humans including chronic hepatitis and hepatocellular carcinoma. Domestic cat hepadnavirus (DCH), a novel HBV-like hepadnavirus, was identified in domestic cats in 2018. From 6.5 %-10.8 % of pet cats are viremic for DCH and altered serological markers suggestive of liver damage have been identified in 50 % of DCH-infected cats. DCH DNA has been detected in association with characteristic lesions of chronic hepatitis and with hepatocellular carcinoma in cats, suggesting a possible association. In this study longitudinal molecular screening of cats infected with DCH was performed to determine if DCH can cause chronic infections in cats. Upon re-testing of sera from five DCH-positive animals, 2-10 months after the initial diagnosis, three cats tested negative for DCH on two consecutive occasions using quantitative PCR. Two other cats remained DCH-positive, including an 8-month-old female cat re-tested four months after the initial positive result, and a 9-year-old male cat, which tested positive for DCH on six occasions over an 11-month period.

To Top