-
Gleason Emery posted an update 3 months, 2 weeks ago
Along the way, we develop a new methodology to compare deterministic model predictions with the stochastic behavior exhibited by the DEM simulations around the jamming transition.A facile synthesis of 2-phosphorylated 2H-chromenes has been accomplished herein via a Y(OTf)3-catalyzed dehydrative coupling of 2H-chromene hemiacetals with P(O)-H compounds. This protocol features low catalyst loading, mild reaction conditions, broad substrate scope and easy elaboration of the products.Lithium salts are commonly used as medication for Bipolar Disorder (BD) and depression. However, there are limited methods to quantify intracellular lithium. Most methods to analyze intracellular electrolytes require tedious sample processing, specialized and often expensive machinery, sometimes involving harmful chemicals, and a bulk amount of the sample. In this work, we report a novel method (FROZEN!) based on cell isolation (from the surrounding medium) through rapid de-ionized water cleaning, followed by flash freezing for preservation. SKOV3 cells were cultured in normal medium and a medium containing 1.0 mM lithium. Lithium and other intracellular electrolytes in the isolated and preserved cells were simultaneously analyzed with laser-induced breakdown spectroscopy (LIBS) and X-ray fluorescence spectroscopy (XRF). Key electrolytes such as sodium, potassium, and magnesium, along with lithium, were detectable at the single-cell level. We found that cells cultured in the lithium medium have an intracellular lithium concentration of 0.5 mM. Concurrently, the intracellular concentrations of other positively charged electrolytes (sodium, potassium, and magnesium) were reduced by the presence of lithium. FROZEN! will greatly facilitate research in intracellular electrolyte balance during drug treatment, or other physiological stresses. In particular, the cell isolation and preservation steps can be easily performed by many laboratories worldwide, after which the samples are sent to an analytical laboratory for electrolyte analysis.Embedded 3D printing, wherein fluid inks are extruded into support baths, has enabled the manufacture of complex, custom structures ranging from cell-laden tissue analogues to soft robots. This method encompasses two techniques embedded ink writing (EIW), where filaments are extruded, and embedded droplet printing (EDP), where droplets are suspended. Materials for embedded 3D printing can be Newtonian, but often both the ink and the support bath are yield stress fluids, following elastic behavior below the yield stress and shear-thinning, viscous behavior above the yield stress. The effect of surface tension on print quality has been debated, as inks have been printed into supports at high and low surface tensions. In order to guide material selection for embedded 3D printing and identify key scaling relationships that influence print quality, this study investigates the role of ink rheology, support rheology, and surface tension on the morphology of single filaments. Numerical simulations in OpenFOAM demonstrate that at low viscosities, surface tension controls the filament morphology. Where capillarity is suppressed, the ratio of the local ink and support viscosities and the shape of the yield surface in the support control the filament shape. Herschel-Bulkley support fluids (yield stress fluids) produce more stable, accurately positioned filaments than Newtonian supports. In the short term, non-zero surface tensions can suppress filament shape defects in EIW and are essential for producing droplets in EDP.Wound healing is a well-orchestrated dynamic and interactive process, which needs a favorable microenvironment and suitable angiogenesis. Platelet derived growth factor-BB (PDGF-BB) plays a crucial role in wound healing. However, the short half-life of PDGF-BB limits its efficacy. In the present study, we successfully synthesized an injectable hydrogel with sodium alginate (SA) and dextran (Dex) as a delivery system to simultaneously deliver PDGF-BB and bone marrow-derived mesenchymal stem cells (BMSCs) in the wound. Our work demonstrates that the PDGF-BB protein enhanced the survival, migration and endothelial cell (EC) differentiation of BMSCs in vitro. The PDGF-BB/SA/Dex hydrogels could sustainably release PDGF-BB with excellent biocompatibility in vitro and in vivo. Besides, these composite hydrogels loaded with BMSCs could accelerate wound healing by improving epithelialization and collagen deposition. In addition, the PDGF-BB/SA/Dex hydrogels promoted the EC-differentiation of transplanted BMSCs and proliferation of hair follicle stem cells in the wound. Furthermore, the expressions of angiogenesis-specific markers, PDGFR-β, p-PI3K, p-Akt, and p-eNOS, were obviously increased in the PDGF-BB/SA/Dex/BMSCs group. In conclusion, the PDGF-BB/SA/Dex injectable hydrogels could accelerate BMSC-mediated skin wound healing by promoting angiogenesis via the activation of the PDGF-BB/PDGFR-β-mediated PI3K/Akt/eNOS pathway, which may provide a new therapeutic strategy for stem cell therapy in wound healing.Single-metal-atom catalysts supported on graphdiyne (GDY) exhibit great potential for catalyzing low temperature CO oxidation in solving the increasingly serious environmental problems caused by CO emissions due to the high catalytic activity, clear structure, uniform metal distribution and low cost. First principle calculations were employed to study CO oxidation activities of four M@GDY single-atom catalysts (M = Pt, Rh, Cu, and Ni). For each catalyst, five possible reaction mechanisms including bi-molecular and tri-molecular reactions were discussed. According to the calculated reaction barriers, the preferred reaction pathway is via the bi-molecular Langmuir-Hinshelwood (BLH) ((CO + O2)* → OCOO* → CO2 + O*) route to yield the first CO2 molecule with 0.55, 0.51, and 0.53 eV as the energy barriers of the rate-limiting steps of Pt@GDY, Rh@GDY, and Cu@GDY, respectively, whereas for Ni@GDY, it switches to the tri-molecular Eley-Rideal (TER1) ((2CO)* + O2→ OCOOCO* → 2CO2) mechanism with the reaction barrier of the rate-limiting step being 1.27 eV. Based on the energy difference in the initial states of the five reaction mechanisms, TER1 is generally viable. selleckchem No matter it is based on the calculated reaction barrier or the energy of the initial state of each mechanism, the non-noble Cu@GDY is supposed to be an efficient catalyst as the noble ones. The electronic properties are calculated to explain the bonding strength and origin of the catalytic performance. The GDY support plays an important role in the electron transfer process.