-
Urquhart Bak posted an update 3 months, 3 weeks ago
In a series of weighted linear regressions and formal tests of mediation, we observed a significant genotype-phenotype association that was partially attenuated after including individual education to the baseline model, although little reductions were observed for household wealth or census tract-level percent poverty. These findings suggest that genetic risk for poor cognition is partially explained by education, and this pathway is not modified by poverty-level of the neighborhood.As part of an ongoing participatory action research project initiated following the 2011 Great East Japan Disaster to improve disaster policies and responses, this study examines social factors and processes that affect women’s well-being in and after disasters. Using PhotoVoice methodology, the project has engaged women affected by the Great East Japan Disaster in participatory assessment and analysis over the last ten years. Begun in three sites in June 2011, the project is currently operating in seven locations four in the coastal areas affected by the tsunami in the Iwate and Miyagi prefectures; two in Fukushima Prefecture; and one in the Tokyo Metropolitan Area, where the largest number of out-of-prefecture evacuees reside. Participating members, recruited in collaboration with local NGOs, are women affected by the disaster aged from in their 20s to over 70 years. They take photographs of their lives and attend facilitated group discussions on an ongoing basis. Participatory analysis of their photographsisasters.Apolipoprotein E ε4 allele (APOE4) is a minor allele of the APOE gene associated with a higher risk for Alzheimer’s Disease (AD) and Vascular Dementia (VD). While lipid deposition and chronic inflammation in glia are the commonalities between atherosclerosis, VD, and AD. Hence, we presented an iPSC line of an AD male donor suffering from Cerebrovascular Atherosclerosis with APOE-ε4/ε4 alleles background. Furthermore, we differentiated the iPSCs into astrocyte to explore pathogenesis in APOE4 related dementia. The characterized iPSC line expressed typical pluripotency markers and showed differentiation potential and normal karyotype.There is concern about adverse effects of thyroid hormone (TH) disrupting chemicals on TH-dependent brain development. Bisphenol A (BPA) and its analogues, such as bisphenol F (BPF), are known to have the potential to interfere with TH signaling, but whether they affect TH-dependent brain development is not yet well documented. Here, we conducted the T3-induced Xenopus laevis metamorphosis assay, a model for studying TH signaling disruption, to investigate the effects of BPA and BPF (10-1000 nM) on TH signaling in brains and subsequent brain development. While 48-hr treatment with 1 nM T3 dramatically upregulated TH-response gene expression in X. laevis brains at stage 52, 1000 and/or 100 nM BPA also caused significant transcriptional up-regulation of certain TH-response genes, whereas BPF had slighter effects, suggesting limited TH signaling disrupting activity of BPF in brains relative to BPA at the lack of TH. In the presence of 1 nM T3, 1000 and/or 100 nM of BPF as well as BPA antagonized T3-induced TH-response gene expression, whereas lower concentrations agonized T3 actions on certain TH-response genes, displaying an apparently biphasic effect on TH signaling. After 96 h exposure, T3 induced brain morphological remodeling coupled with cell proliferation and neuronal differentiation, whereas both BPA and BPF generally antagonized T3-induced changes in a concentration-dependent manner, with weak or no effects of bisphenol exposure alone. Overall, all results show that BPA and BPF interfered with TH signaling in Xenopus brains, especially in the presence of TH, and subsequently affected TH-dependent brain development. Given the evolutionary conservation of TH-dependent brain development among vertebrates, our findings from X. laevis warrant further studies to reveal potential influences of bisphenols on TH-dependent brain development in higher vertebrates.In this manuscript, ZIF-8 derived nanoporous carbon material (ZC) was prepared and used as modification material to construct a molecularly imprinted electrochemical sensor for the direct detection of tert-butyl hydroquinone (TBHQ) in edible oil. Electrochemical characterizations, scanning electron microscopy and X-ray diffraction show that ZC has excellent conductivity, high electrochemical active area and stable porous framework structure. Using TBHQ as template and o-phenylenediamine as functional monomer, the sensor was constructed. Experimental parameters such as the number of polymerization cycle, polymerization speed, and pH of the measured solution, removal and rebinding time were studied. Selleckchem Asunaprevir Under optimized conditions, the prepared sensor showed a wider linear range from 1.0 μmol L-1 to 75.0 μmol L-1 with the detection limit of 0.42 μmol L-1 (S/N = 3). Meanwhile, the sensor also expressed good selectivity, repeatability, reproducibility, stability and successfully applied for the determination of TBHQ in real edible oil, giving satisfactory results.Fungal protease FPII was found to hydrolyse sheep β-lactoglobulin (β-Lg), and the hydrolysate exhibited substantial antioxidant and ACE inhibition bioactivities. From analysis of the peptide sequences in the hydrolysate in relation to bioactivity, synthetic peptides corresponding to four regions of sequence in β-Lg (LAFNPTQLEGQCHV, DTDYKKYLLF, LDAQSAPLRVY and VEELKPTPE) were analysed for bioactivity. Additional synthetic peptides were designed to examine the bioactivity of different parts of the above four sequences, and the effect of amino acid substitutions on bioactivity. The results show that parts of the peptide sequences contribute differently to bioactivity and substitution of amino acids has a substantial effect on antioxidant and ACE inhibition activities.Present study investigated the effect of sand, pan and microwave roasting on physico-chemical, functional and rheological properties of yellow (YW), purple (PW), and black wheat (BW). All roasting methods enhanced the browning index (BI), water absorption capacity (WAC) and oil absorption capacity (OAC) roasted wheat flour. Microwave roasting showed significantly higher impact on BI (58.61% for YW, 131% for BW and 83.85% for PW) and WAC (47.93% for YW, 44.63% for BW and 32.09% for PW). However, the decrease in density, emulsifying capacity (EC), foaming capacity (FC), total phenolic content (TPC), total flavonoid content (TFC), and total anthocyanin content (TAC), and antioxidant activity was observed on roasted wheat flour. Roasting also affected the pasting properties of wheat flours and peak, trough, breakdown and final viscosity decreased.