Activity

  • Lindgaard Porterfield posted an update 3 months, 3 weeks ago

    As a demonstration, we fabricate flexible organic devices (organic photovoltaic and organic light-emitting diode) on c-ITO/AgNW-GFRH films that show device performance comparable to that of references ITO/glass substrates and superior mechanical flexibility. see more With excellent stability and demonstrations, we expect that the c-ITO/AgNW-GFRHs can be used as flexible TCE/substrate films for future thin-film optoelectronics.α-Synuclein (α-syn) aggregates are pathologically associated with the hallmarks found in brains affected by synucleinopathies such as Parkinson’s disease (PD) and multiple system atrophy (MSA). Therefore, the in vivo detection of α-syn aggregates using radiolabeled probes is useful for the comprehension of and medical intervention for synucleinopathies. In the present study, we identified a bisquinoline scaffold as a new promising structure for targeting α-syn aggregates by a screening assay. Then, based on the scaffold, novel bisquinoline derivatives, BQ1 and BQ2, were designed and synthesized, and we evaluated their utilities as α-syn imaging probes. Both compounds showed high affinity for recombinant α-syn aggregates in binding assays in vitro and clearly detected α-syn aggregates in human brain sections. BQ2 showed higher affinity for α-syn aggregates than BQ1, leading to performing 18F-labeling to obtain [18F]BQ2. In a biodistribution study using normal mice, [18F]BQ2 displayed moderate uptake (1.59% ID/g at 2 min postinjection) into but subsequent retention (1.35% ID/g at 60 min postinjection) in the brain. The results of this study suggest that a bisquinoline derivative may be a new candidate as an α-syn-PET imaging probe after appropriate structure modification for further improvement in the pharmacokinetics.Combination antiretroviral therapy (cART) suppresses human immunodeficiency virus-1 (HIV-1) replication but is unable to permanently eradicate HIV-1. Importantly, cART does not target HIV-1 transcription, which is reactivated in latently infected reservoirs, leading to HIV-1 pathogenesis including non-infectious lung, cardiovascular, kidney, and neurodegenerative diseases. To address the limitations of cART and to prevent HIV-1-related pathogenesis, we developed small molecules to target the noncatalytic RVxF-accommodating site of protein phosphatase-1 (PP1) to prevent HIV-1 transcription activation. The PP1 RVxF-accommodating site is critical for the recruitment of regulatory and substrate proteins to PP1. Here, we confirm that our previously developed 1E7-03 compound binds to the PP1 RVxF-accommodating site. Iterative chemical alterations to 1E7-03 furnished a new analogue, HU-1a, with enhanced HIV-1 inhibitory activity and improved metabolic stability compared to 1E7-03. In a Split NanoBit competition assay, HU-1a primarily bound to the PP1 RVxF-accommodating site. In conclusion, our study identified HU-1a as a promising HIV-1 transcription inhibitor and showed that the PP1 RVxF-accommodating site is a potential drug target for the development of novel HIV-1 transcription inhibitors.This study investigated the fundamental mechanisms of the loss of capacity of LiNiO2 (LNO) electrodes for Li+ insertion/deinsertion with a special focus on the origin of this deterioration in an aqueous system. In situ Raman spectra revealed that the intercalation of H+ ions formed a NiOOH x film at the surface of LNO during the initial electrochemical cycles; this NiOOH x film was also confirmed by X-ray photoelectron spectroscopy and transmission electron microscopy analysis. The formation of an electrochemically inactive spinel-like phase (Ni3O4) at the subsurface was triggered by the absence of Li in the NiOOH x film at the surface. These structural changes of LNO, accelerated by the intercalation of H+ ions, were considered to be the fundamental cause of the greater loss of capacity in the aqueous system.Strategic design and fabrication of a highly efficient and cost-effective bifunctional electrocatalyst is of great significance in water electrolysis in order to produce sustainable hydrogen fuel in a large scale. However, it is still challenging to develop a stable, inexpensive, and efficient bifunctional electrocatalyst that can overcome the sluggish oxygen evolution kinetics in water electrolysis. To address the aforementioned concerns, a metal-organic framework-derived Fe-doped Ni3Fe/NiFe2O4 heterostructural nanoparticle-embedded carbon nanotube (CNT) matrix (Fe(0.2)/Ni-M@C-400-2h) is synthesized via a facile hydrothermal reaction and subsequent carbonization of an earth-abundant Ni/Fe/C precursor. With a novel porous nanoarchitecture fabricated by a Ni3Fe/NiFe2O4 heterostructure on a highly conductive CNT matrix, this catalyst exhibits exceptional bifunctional activity during water electrolysis over the Ni/Fe-based electrocatalysts reported recently. It delivers a low overpotential of 250 mV to achieve a current density of 10 mA/cm2 with a small Tafel slope of 43.4 mV/dec for oxygen evolution reaction. It requires a low overpotential of 128 mV (η10) for hydrogen evolution reaction and displays a low overpotential of 1.62 V (η10) for overall water splitting. This study introduces a facile and straightforward synthesis strategy to develop transition metal-based nanoarchitectures with high performance and durability for overall water-splitting catalysis.Chlorosomes in green photosynthetic bacteria are the largest and most efficient light-harvesting antenna systems of all phototrophs. The core part of chlorosomes consists of bacteriochlorophyll c, d, or e molecules. In their biosynthetic pathway, a BciC enzyme catalyzes the removal of the C132-methoxycarbonyl group of chlorophyllide a. In this study, the in vitro enzymatic reactions of chlorophyllide a analogues, C132-methylene- and ethylene-inserted zinc complexes, were examined using a BciC protein from Chlorobaculum tepidum. As the products, their hydrolyzed free carboxylic acids were observed without the corresponding demethoxycarbonylated compounds. The results showed that the in vivo demethoxycarbonylation of chlorophyllide a by an action of the BciC enzyme would occur via two steps (1) an enzymatic hydrolysis of a methyl ester at the C132-position, followed by (2) a spontaneous (nonenzymatic) decarboxylation in the resulting carboxylic acid.

To Top