Activity

  • Brodersen Gould posted an update 3 months, 1 week ago

    The present study investigated the inhibitory effects and the associated mechanism of the compound 25-OH-PPD (PPD) on cardiac hypertrophy, fibrosis and inflammation. The signaling pathways associated with diabetic mellitus cardiomyopathy (DMCM) were investigated using a rat model. DMCM Sprague-Dawley rats were induced by injection of streptozotocin. The animals were divided into 5 groups as follows Normal group (NG group), diabetic group, PPD treatment group, PPD/LY294002 group (inhibitor of PI3K/Akt) and PPD/LiCl group [inhibitor of glycogen synthase kinase (GSK) 3β]. The studies were carried out during the 12 weeks following induction of diabetes and the levels of plasma brain natriuretic peptide (BNP), creatine phosphokinase isoenzyme (CK-MB) were measured. selleck chemical In addition, the volume of myocardial collagen fraction (CVF) was tested. The expression levels of the inflammatory cytokines, including transforming growth factor beta 1 (TGF-β1), connective tissue growth factor (CTGF), cell adhesion molecules α-smooth muscle actin (α-SMA) and vascular adhesion molecule 1 (VCAM-1) and associated signaling proteins (Akt, GSK-3β) were measured by biochemical analyses. The levels of BNP and CK-MB, the volume of CVF, the expression levels of TGF-β1, CTGF, α-SMA and VCAM-1 in the diabetic group were higher compared with those of the normal control group (P less then 0.05). Conversely, the levels of these molecules were significantly decreased in the PPD treatment groups (P less then 0.05). The aforementioned effects were partially eliminated in the PPD/LY294002 and PPD/LiCl groups. In addition, PPD treatment significantly increased the expression levels of p-Akt and decreased the levels of phosphorylated GSK-3β compared with those of the DMCM group (P less then 0.05). The data demonstrated that the protective effects of 25-OH-PPD against DMCM may be attributed to the PI3k/Akt/GSK-3β signaling pathway, via the suppression of the α-SMA/VCAM axis and the downregulation of TGF-β1 and CTGF expression.Colorectal cancer (CRC) is one of the major threats to human health worldwide. In the treatment of CRC, chemoresistance affects the efficacy of platinum-based therapies. Oxaliplatin is one of the most commonly used first-line medications for the treatment of CRC; however, chemoresistance is common among patients receiving oxaliplatin treatment, which significantly decreases its therapeutic efficacy. The present study focused on the roles of microRNA (miR)-96 in the oxaliplatin resistance of CRC cells and the underlying mechanisms. First, the expression of miR-96 was compared between CRC and adjacent tissues. Furthermore, target genes of miR-96 were predicted, and a dual-luciferase reporter assay was employed to confirm whether the candidate tropomyosin 1 (TPM1) is a direct target of miR-96. In addition, CRC cells were transfected with miR-96 inhibitor, miR-negative control, small interfering RNA (siRNA) targeting TPM1 or siRNA NC, and then treated with oxaliplatin. CCK-8 assay and flow cytometry were performed to examine the proliferation and apoptosis of the CRC cell line SW480. Next, reverse transcription-quantitative PCR and western blot analysis were performed to determine the mRNA and/or protein levels of miR-96, Bcl-2, BAX and TPM1. The results indicated that miR-96 was upregulated in CRC compared with normal adjacent tissues, while TPM1 was downregulated. The luciferase activity was reduced following transfection with miR-96 mimics and luciferase reporter plasmid containing the wild-type sequence of the 3′-untranslated region of TPM1. Furthermore, knockdown of miR-96 combined with oxaliplatin reduced the viability and induced apoptosis of CRC cells, which was further verified by decreased expression of Bcl-2 and the increased expression of TPM1 and BAX. Taken together, the downregulation of miR-96 enhanced the sensitivity of CRC cells to oxaliplatin.Expression characteristics of inflammatory factors interleukin-23 and interleukin-35; oxidative stress markers of malondialdehyde, which is a final product of lipid peroxidation; superoxide dismutase; microRNA-126 and microRNA-146a in serum of patients with coronary heart disease were investigated. Correlation between these biomarkers and CACS (calcification score), as well as the underlying clinical significance were evaluated. A total of 192 patients diagnosed with coronary heart disease were recruited as the observation group, and 69 healthy adults who provided their blood samples were selected as the control group. Enzyme linked immunosorbent assay was carried out to measure the levels of inflammatory factors interleukin-23 and interleukin-35, and the levels of oxidative stress markers of malondialdehyde and superoxide dismutase in serum of the patients and healthy subjects. Real-time fluorescence-based quantitative PCR was performed to measure the expression levels of microRNA-126 and microRNA-146a in ses with coronary heart disease, implicating their association with onset and progression of the disease. The biomarkers were found to be correlated with coronary artery calcium score. Detection of changes of related biomarkers in serum may have certain value in diagnosis of disease formation, as well as assessment of disease severity.Correlation between asthmatic infants with rickets and vitamin D, inflammatory factors and immunoglobulin was investigated. A total of 60 child patients with asthma who met the inclusion criteria and received treatment from January 2016 to October 2017 were collected. Among them, 17 asthmatic infants with rickets were set as observation group, while 43 child patients with simple asthma were regarded as the control group. Venous blood was drawn from the two groups of subjects after admission. The levels of interleukin-1 (IL-1), IL-6 and IL-17 in serum were determined by ELISA, vitamin D and immunoglobulin E levels in serum were detected using a fully-automatic biochemical analyzer, and wheezing duration during asthma attack was recorded. IL-1, IL-6, IL-17 and immunoglobulin E levels in serum of observation group were significantly higher than those of the control group (P less then 0.05). The vitamin D level in the observation group was remarkably lower than that in the control group (P less then 0.05). Wheezing duration in observation group was evidently longer than that in control group (P less then 0.

To Top