Activity

  • Kinney Burris posted an update 3 months, 1 week ago

    Host immune response and viral factors are involved in disease progression in patients with chronic hepatitis B virus (HBV) infection. However, the relationship between HBV quasispecies and liver fibrosis progression remains unclear. In this study, 447 patients with chronic HBV infection, including 239 with chronic hepatitis B (CHB), 104 with liver cirrhosis (LC) and 104 with hepatocellular carcinoma (HCC) were enrolled. The 239 CHB patients were divided into groups F1, F2, and F3 according to liver fibrosis score. Four fragments of the HBV genome were determined and analyzed using next-generation sequencing. Specific mutations, such as A1762T, G1764A and G1896A, in the BCP/PC region were more common in patients with advanced liver disease and formed the majority of the viral quasispecies pool in patients with LC and HCC. The viral complexity and diversity increased as the fibrosis progressed, especially in patients with CHB who were comparable in age but at different stages of fibrosis. Patients with early-stage fibrosis experienced higher purifying selection pressure in the four sequenced regions, whereas different protein-coding region experienced different negative selection with disease progression. Neratinib HBV quasispecies diversity may increase fibrosis progression in CHB patients with aging under immune selection.The rise in human adenovirus (HAdV) infections poses a serious challenge to public health in China. Real-time (RT) sequencing provides solutions for achieving rapid pathogen identification during outbreaks, whereas high-throughput sequencing yields higher sequence accuracy. In the present study, we report the outcomes of applying nanopore and BGI platforms in the identification and genomic analysis of an HAdV outbreak in Hubei province, China in May of 2019. A mixed sample of nine nasopharyngeal swabs and one single sample were submitted to direct nanopore sequencing (MinION device), generating their first HAdV-55 reads within 13 and 20 min, respectively. The sequences were confirmed by RT-polymerase chain reaction (PCR). Ten HAdV-positive samples were further sequenced using next-generation high-throughput sequencing (BGISEQ-500 device). Phylogenetic analysis revealed that the outbreak strain had a close genetic relation to strains isolated in Sichuan province. Metagenomic analysis showed that HAdV-55 was not a dominant species in samples from which the whole HAdV-55 genome could not be assembled. The present results highlight the value of combining sequencing platforms and using mixed samples for nucleic acid enrichment in pathogen detection of infectious disease outbreaks.

    A frequent emergence of drug resistance has been observed and posed great threat to global public health recently. This work aimed to investigate the potential synergistic effect and the underlying mechanisms of AgNPs-fluconazole combination more extensively through 2 clinically isolated fluconazole-resistant Candida albicans (C. albicans) strains.

    Antifungal properties of AgNPs and fluconazole alone or together against planktonic cells and biofilms were tested. Cellular and molecular targets associated with fluconazole resistance were monitored after AgNPs treatment. Antifungal potential of AgNPs-fluconazole combination was also explored in vivo using a mouse model of disseminated candidiasis. Tissue burden and survival rate were analyzed.

    The results indicated that AgNPs worked synergistically with fluconazole against both planktonic cells of fluconazole-resistant C. albicans and biofilms formed <12h. AgNPs treatment down-regulated ERG1, ERG11, ERG25, and CDR2, decreased membrane ergosterol levels and membrane fluidity, reduced membrane content of Cdr1p, Cdr2p, and thus efflux bump activity. The elevated ROS production was also a likely cause of the synergistic effect. In vivo, AgNPs and fluconazole combination significantly decreased the fungal burden and improved the survival rate of infected mice.

    In conclusion, these results further confirm that AgNPs-fluconazole combination is a hopeful strategy for the treatment of fluconazole-resistant fungal infections.

    In conclusion, these results further confirm that AgNPs-fluconazole combination is a hopeful strategy for the treatment of fluconazole-resistant fungal infections.The expansion of specific carbapenem-resistant Acinetobacter baumannii (CRAB) clones is a global concern due to its therapeutic difficulty and epidemicity. To understand the prevalence of CRAB isolates in a Korean hospital, we investigated the epidemiological characteristics of 96 CRAB isolates between 2016 and 2018, including the sequence types (STs), antimicrobial susceptibility, and genetic background of resistance to carbapenems and aminoglycosides. Six STs were identified using the Oxford multilocus sequence typing scheme; ST191 (n = 8), ST208 (n = 12), ST229 (n = 11), and ST369 (n = 21) were previously identified clones in the study hospital, whereas gpi variants of ST208, ST451 (n = 34) and ST784 (n = 10), were emerging clones. ST208 isolates exhibited higher resistance rates to minocycline than other ST isolates, whereas ST369 isolates exhibited lower resistance rates to aminoglycosides and trimethoprim/sulfamethoxazole than other ST isolates. All CRAB isolates previously isolated in the study hospital carried ISAbaI-blaOXA-23 for carbapenem resistance, but 10 ST229 isolates carried only ISAbaI-blaOXA-51. The carriage of armA was lower in ST369 isolates (38%) than in other ST isolates (≥83%). The frequency and diversity of aminoglycoside-modifying enzyme genes were decreased among the CRAB isolates between 2016 and 2018 compared with CRAB isolates between 2013 and 2015 at the study hospital. In conclusion, clonal complex 208 CRAB isolates are predominant in the study hospital. This study demonstrates the evolutionary change of CRAB isolates in the study hospital in relation to the emergence of new STs and selection of resistant genes.Cone snails produce venom that contains diverse groups of peptides (conopeptides/conotoxins) and display a wide mass range, high rate of posttranslational modifications, and many potential pharmacological targets. Here we employ a proteogenomic approach to maximize conopeptide identification from the injected venom of Conus purpurascens. mRNA sequences from C. purpurascens venom ducts were assembled into a search database and complemented with known sequences and de novo approaches. We used a top-down peptidomic approach and tandem mass spectrometry identification to compare injected venom samples of 27 specimens. This intraspecific analysis yielded 543 unique conopeptide identifications, which included 33 base conopeptides and their toxiforms, 21 of which are novel. The results reveal two distinct venom profiles with different synergistic interactions to effectively target neural pathways aimed to immobilize prey. These venom expression patterns will aid target prediction, a significant step toward developing conotoxins into valuable drugs or neural probes.

To Top