Activity

  • Levy Kidd posted an update 3 months, 1 week ago

    n natural cyanobacterial bloom community regulation.Antimicrobial susceptibility in Pseudomonas aeruginosa is dependent on a complex combination of host and pathogen-specific factors. Through the profiling of 971 clinical P. aeruginosa isolates from 590 patients and collection of paired patient metadata, we show that antimicrobial resistance is associated with not only patient-centric factors (e.g., cystic fibrosis and antipseudomonal prescription history) but also microbe-specific phenotypes (e.g., mucoid colony morphology). Additionally, isolates from different sources (e.g., respiratory tract, urinary tract) displayed rates of antimicrobial resistance that were correlated with source-specific antimicrobial prescription strategies. Furthermore, isolates from the same patient often displayed a high degree of heterogeneity, highlighting a key challenge facing personalized treatment of infectious diseases. Our findings support novel relationships between isolate and patient-level data sets, providing a potential guide for future antimicrobial treatment strategies. IMPORTANCE P. aeruginosa is a leading cause of nosocomial infection and infection in patients with cystic fibrosis. While P. aeruginosa infection and treatment can be complicated by a variety of antimicrobial resistance and virulence mechanisms, pathogen virulence is rarely recorded in a clinical setting. In this study, we discovered novel relationships between antimicrobial resistance, virulence-linked morphologies, and isolate source in a large and variable collection of clinical P. aeruginosa isolates. Our work motivates the clinical surveillance of virulence-linked P. aeruginosa morphologies as well as the tracking of source-specific antimicrobial prescription and resistance patterns.Yeast cell wall stability is important for cell division and survival under stress conditions. The expression of cell-wall-related proteins is regulated by several pathways involving RNA-binding proteins and RNases. The multiprotein RNA exosome complex provides the 3’→5′ exoribonuclease activity that is critical for maintaining the stability and integrity of the yeast cell wall under stress conditions such as high temperatures. In this work, we show that the temperature sensitivity of RNA exosome mutants is most pronounced in the W303 genetic background due to the nonfunctional ssd1-d allele. Avitinib ic50 This gene encodes the RNA-binding protein Ssd1, which is involved in the posttranscriptional regulation of cell-wall-related genes. Expression of the functional SSD1-V allele from its native genomic locus or from a centromeric plasmid suppresses the growth defects and aberrant morphology of RNA exosome mutant cells at high temperatures or upon treatment with cell wall stressors. Moreover, combined inactivation of the RNA exosome catalytic subunit Rrp6 and Ssd1 results in a synthetically sick phenotype of cell wall instability, as these proteins may function in parallel pathways (i.e., via different mRNA targets) to maintain cell wall stability. IMPORTANCE Stressful conditions such as high temperatures can compromise cellular integrity and cause bursting. In microorganisms surrounded by a cell wall, such as yeast, the cell wall is the primary shield that protects cells from environmental stress. Therefore, remodeling its structure requires inputs from multiple signaling pathways and regulators. In this work, we identify the interplay of the RNA exosome complex and the RNA-binding protein Ssd1 as an important factor in the yeast cell wall stress response. These proteins operate in independent pathways to support yeast cell wall stability. This work highlights the contribution of RNA-binding proteins in the regulation of yeast cell wall structure, providing new insights into yeast physiology.After staphylococci, streptococci and enterococci are the most frequent causes of periprosthetic joint infection (PJI). MICs and minimum biofilm bactericidal concentrations of rifampin, rifabutin, and rifapentine were determined for 67 enterococcal and 59 streptococcal PJI isolates. Eighty-eight isolates had rifampin MICs of ≤1 μg/ml, among which rifabutin and rifapentine MICs were ≤ 8 and ≤4 μg/ml, respectively. There was low rifamycin in vitro antibiofilm activity except for a subset of Streptococcus mitis group isolates. IMPORTANCE Rifampin is an antibiotic with antistaphylococcal biofilm activity used in the management of staphylococcal periprosthetic joint infection with irrigation and debridement with component retention; some patients are unable to receive rifampin due to drug interactions or intolerance. We recently showed rifabutin and rifapentine to have in vitro activity against planktonic and biofilm states of rifampin-susceptible periprosthetic joint infection-associated staphylococci. After staphylococci, streptococci and enterococci combined are the most common causes of periprosthetic joint infection. Here, we investigated the in vitro antibiofilm activity of rifampin, rifabutin, and rifapentine against 126 Streptococcus and Enterococcus periprosthetic joint infection isolates. In contrast to our prior findings with staphylococcal biofilms, there was low antibiofilm activity of rifampin, rifabutin, and rifapentine against PJI-associated streptococci and enterococci, apart from some Streptococcus mitis group isolates.Although nasopharyngeal samples have been considered the gold standard for COVID-19 testing, variability in viral load across different anatomical sites could cause nasopharyngeal samples to be less sensitive than saliva or nasal samples in certain cases. Self-collected samples have logistical advantages over nasopharyngeal samples, making them amenable to population-scale screening. To evaluate sampling alternatives for population screening, we collected nasopharyngeal, saliva, and nasal samples from two cohorts with varied levels and types of symptoms. In a mixed cohort of 60 symptomatic and asymptomatic participants, we found that saliva had 88% concordance with nasopharyngeal samples when tested in the same testing lab (n = 41) and 68% concordance when tested in different testing labs (n = 19). In a second cohort of 20 participants hospitalized for COVID-19, saliva had 74% concordance with nasopharyngeal samples tested in the same testing lab but detected virus in two participants that tested negative with nasopharyngeal samples on the same day.

To Top