-
Funch Bryan posted an update 3 months, 2 weeks ago
Accurate field-based assessment of dance kinematics is important to understand the etiology, and thus prevention and management, of hip and back pain. The study objective was to develop a machine learning model to estimate thigh elevation and lumbar sagittal plane angles during ballet leg lifting tasks, using wearable sensor data.
Female dancers (n=30) performed ballet-specific leg lifting tasks to the front, side, and behind the body. Dancers wore six wearable sensors (100 Hz). Data were simultaneously collected using an 18-camera motion analysis system (250 Hz). Due to synchronization and hardware malfunction issues, only 23 dancers had usable data. Using leave-one-out cross-validation, machine learning models were compared with the optic motion capture system using root mean square error (RMSE) in degrees and correlation coefficients (r) over the complete movement profile of each leg lift and mean absolute error (MAE) and Bland Altman plots for peak angle accuracy.
The average RMSE for model estimation was 6.8° for thigh elevation angle and 5.6° for lumbar spine sagittal plane angle, with respective MAE of 6.3°and 5.7°. There was a strong correlation between the machine learning model and optic motion capture for peak angle values (thigh r=0.86, lumbar r=0.96).
The models developed demonstrated an acceptable degree of accuracy for the estimation of thigh elevation angle and lumbar spine sagittal plane angle during dance-specific leg lifting tasks. This provides potential for a near-real-time, field-based measurement system.
The models developed demonstrated an acceptable degree of accuracy for the estimation of thigh elevation angle and lumbar spine sagittal plane angle during dance-specific leg lifting tasks. This provides potential for a near-real-time, field-based measurement system.3,5-Dimethylpyrazole (Pz*H) in well-defined Cp*RhIII (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl) complexes, or as an additive to [Cp*RhCl2]2 enhances catalytic activity in the dehydrogenation of dimethylamine-borane (DMAB) at room-temperature. Mechanistic studies indicate that the Lewis acidic RhIII-centre and dangling N-atom of the Pz* fragment operate cooperatively in accepting a hydride and proton from DMAB, respectively, leading directly to dimethylamino-borane and a RhIII-H complex. The rate limiting step involves protonation of the RhIII-H by the proximal NH fragment of the Pz*H moiety.The interaction of copolymer L61 i.e., (EO)2(PO)32(EO)2 (where EO and PO are ethylene and propylene oxides, respectively) with surfactant SDS (sodium dodecylsulfate) in relation to their self-aggregation, dynamics and microstructures has been physicochemically studied in detail employing the Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR), Small-Angle Neutron Scattering (SANS), and Freeze-Fracture Transmission Electron Microscopy (FF-TEM) methods. The NMR self-diffusion study indicated a synergistic interaction between SDS and L61 forming L61-SDS mixed complex aggregates, and deuterium (2H) NMR pointed out the nonspherical nature of these aggregates with increasing [L61]. TPH104m cell line EPR spectral analysis of the motional parameters of 5-doxyl steraric acid (5-DSA) as a spin probe provided information on the microviscosity of the local environment of the L61-SDS complex aggregates. SANS probed the geometrical aspects of the SDS-L61 assemblies as a function of both [L61] and [SDS]. Progressive evolution of the mixed-aggregate geometries from globular to prolate ellipsoids with axial ratios ranging from 2 to 10 with increasing [L61] was found. Such morphological changes were further corroborated with the results of 2H NMR and FF-TEM measurements. The strategy of the measurements, and data analysis for a concerted conclusion have been presented.Ursolic acid (UA) shows an effect on obesity and related metabolic diseases, but its mechanism of action remains unclear. We found that UA clearly reduced the body weight and adipose tissue mass and improved the glucose tolerance and insulin sensitivity in obese male mice. UA treatment significantly reduced the volume and weights of the epididymal white adipose tissue (eWAT) and inguinal subcutaneous white adipose tissue (igSWAT) of HFD-fed mice, respectively. UA also decreased the expression of genes involved in adipocyte differentiation and lipogenesis in igSWAT. Real-time PCR and immunohistochemistry showed that the expression of beiging-related genes 4-1BB factor (CD137), T-box transcription factor 1 (TBX1), and transmembrane protein 26 (TMEM26) were significantly increased in the UA treatment group. UA treatment significantly reduced the weight of gastrocnemius muscle (GM) and lipid droplets in the GM. UA treatment significantly upregulated the expression of PR domain-containing 16 (PRDM16), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), and fibronectin type 3 domain-containing protein 5 (FNDC5) in GM and igSWAT. UA also stimulated irisin secretion in the serum. In conclusion, these results indicate that UA plays an anti-obesogenic role by increasing the secretion of irisin and promoting the beiging of WAT.Carboxylic acids are not only essential sections of medicinal molecules, natural products and agrochemicals but also basic building blocks for organic synthesis. However, high temperature, expensive catalysts and excess oxidants are normally required for carboxylic acid group transformations. Therefore, more eco-friendly and efficient methods are urgently needed. Organic electrochemistry, as an environmentally friendly and sustainable synthetic method, can potentially avoid the above problems and is favored by more and more organic chemists. This review summarized the recent progress on the electrochemical synthesis of carboxylic acids to construct more complex compounds, emphasizing the development of electrosynthesis methodologies and mechanisms in order to attract more chemists to recognize the importance and applications of electrochemical synthesis.A family of cyano-bridged 3d-4f 1D chain compounds, RE[TM(CN)6(2-PNO)5]·(H2O)4 RE = YIII, TM = [FeIII]LS (1); RE = DyIII, TM = CoIII (3); RE = ErIII, TM = [FeIII]LS (4), CoIII (5); 2-PNO = 2-picoline-N-oxide and RE[TM(CN)6(2-PNO)5] RE = DyIII, TM = [FeIII]LS (2), were synthesized and characterized. Single-crystal X-ray diffraction studies reveal that compounds 1 and 3-5 are isostructural, while compound 2 has a similar 1D chain structure with a different chain to chain arrangement. An axially-elongated pentagonal bipyramidal (D5h) coordination geometry is formed with five 2-PNO ligands in the equatorial plane and two [TM(CN)6]3- on the apical sites around the rare earth ions in these compounds. A comparison of the magnetic relaxation behaviour in detail reveals that it is more favorable for the Er (4 and 5) than the Dy analogues (2 and 3) to exhibit SIM properties in this axially-elongated D5h coordination environment. Under zero dc field, ac susceptibility measurements show that the Dy analogues have no magnetic relaxation behaviour, while the Er analogues exhibit frequency dependence despite the strong QTM effect.