-
Sutton Lucas posted an update 3 months, 2 weeks ago
Moreover, both ESCH and F3 showed DPPH and ABTS free radical scavenging abilities which was possibly related to the anti-inflammatory property. These results indicated that ESCH behaved anti-inflammatory and antioxidant activities. Cartilage may be a good source to produce anti-inflammatory peptides.Background Adequate intake of vegetables facilitates a healthy lifestyle. However, the majority of Nepalese young adults consume inadequate amount of vegetables per day. Objectives We explored psychosocial determinants of daily intake of two or more servings of vegetables among Nepalese young adults using attitude, social influence, and self-efficacy (ASE) as a theoretical framework, extended with measures of habit and self-identity as additional constructs. Methods/Participants A cross-sectional study through a web-based questionnaire survey was conducted among 461 Nepalese young adults aged 18-35 years old. Participants were recruited through convenience (snowball) sampling. A factor-based partial least square structural equation modelling was used for analysis. Results The findings indicated that attitudes (β = 0.09, p = 0.029), social influence (β = 0.17, p less then 0.001), habit (β = 0.24, p less then 0.001) and self-identity (β = 0.30, p less then 0.001) were significant factors influencing intenluence behaviour to eat two or more servings of vegetables per day.Deficiency of micronutrient elements, such as zinc (Zn) and iron (Fe), is called “hidden hunger,” and bio-fortification is the most effective way to overcome the problem. Adrenergic Receptor agonist In this study, a high-density Affymetrix 50K single-nucleotide polymorphism (SNP) array was used to map quantitative trait loci (QTL) for grain Zn (GZn) and grain Fe (GFe) concentrations in 254 recombinant inbred lines (RILs) from a cross Jingdong 8/Bainong AK58 in nine environments. There was a wide range of variation in GZn and GFe concentrations among the RILs, with the largest effect contributed by the line × environment interaction, followed by line and environmental effects. The broad sense heritabilities of GZn and GFe were 0.36 ± 0.03 and 0.39 ± 0.03, respectively. Seven QTL for GZn on chromosomes 1DS, 2AS, 3BS, 4DS, 6AS, 6DL, and 7BL accounted for 2.2-25.1% of the phenotypic variances, and four QTL for GFe on chromosomes 3BL, 4DS, 6AS, and 7BL explained 2.3-30.4% of the phenotypic variances. QTL on chromosomes 4DS, 6AS, and 7BL might have pleiotropic effects on both GZn and GFe that were validated on a germplasm panel. Closely linked SNP markers were converted to high-throughput KASP markers, providing valuable tools for selection of improved Zn and Fe bio-fortification in breeding.The coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which rages all over the world and seriously threatens human life and health. Currently, there is no optimal treatment for COVID-19, and emerging evidence found that COVID-19 infection results in gut microbiota dysbiosis. The intestinal microbial richness of patients of COVID-19 does not return to normal levels even six months after recovery, but probiotic adjunctive treatment has been found to restore gut homeostasis. An updated PubMed search returned four finished clinical trials that supported the use of probiotics as adjunctive treatment for COVID-19, while at least six clinical trials aiming to investigate beneficial effects of probiotic intake in managing COVID-19 are currently in progress worldwide. Here in we tentatively summarized the understanding of the actions and potential mechanisms of probiotics in the management of COVID-19. We also highlighted some future needs for probiotic researchers in the field. The success in using probiotics as adjunctive treatment for COVID-19 has expanded the scope of application of probiotics, meanwhile deepening our knowledge in the physiological function of probiotics in modulating the gut-lung axis.Background Polycystic ovary syndrome (PCOS), one of the most common endocrine diseases in women of childbearing age, has been found to be accompanied by changes in the gut microbiota. The Bu Shen Yang Xue formula (BSYXF) is a traditional Chinese medicine widely used for the treatment of PCOS. This study aimed to investigate whether the protective effects of β-sitosterol, the main active ingredient of BSYXF, on PCOS was mediated by regulating gut microbiota. Methods The presence of β-sitosterol in BSYXF was detected by liquid chromatography-mass spectrometry. The PCOS-like mouse model was induced by dehydroepiandrosterone. The fecal supernatant of β-sitosterol-treated mice was prepared for fecal microbiota transplantation (FMT). Body weight and wet weight of the uterus and ovary of the mice were recorded for organ index calculation. Hematoxylin and eosin stain was used to assess the endometrial morphology and microenvironment changes. Expression of endometrial receptivity markers cyclooxygenase-2 (COX-2), Integrin ανβ3, leukemia inhibitory factor (LIF), and homeobox A10 (HOXA10) in the endometrium were determined by immunohistochemistry and western blot analysis. Enzyme-linked immunosorbent assay was employed to detect the expression of follicle stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P), and testosterone (T) in the serum. The diversity of gut microbiota was examined by 16S rDNA gene sequencing. Results With the treatment of β-sitosterol and β-sitosterol-FMT, the uterine index of PCOS-like mice increased, the ovarian index decreased, levels of COX-2, LH and T decreased, and levels of Integrin ανβ3, LIF, HOXA10, FSH, and P increased. Under β-sitosterol treatment, the structure of the gut microbiota in PCOS-like mice was also changed. Conclusion β-sitosterol regulates the endometrial receptivity of PCOS and harmonizes the sex hormone balance, which may be related to the changes in the structure and composition of gut microbiota, thus affecting the pathological process of PCOS.The relationship of protein intake with insulin-like growth factor 1 (IGF-1) concentrations in well-nourished children during the second year of life is poorly understood. The aim of this study was to explore the effect of a reduced-protein Growing Up Milk Lite (GUMLi) or unfortified cow’s milk (CM) on protein intake, growth, and plasma IGF-1 at 2 y. An exploratory analysis of a sub-sample of Auckland-based children (n = 79) in the GUMLi trial (a double-blind, randomised control trial, N = 160) completed in Auckland and Brisbane (2015-2017) was conducted. One-year old children were randomised to receive a reduced-protein GUMLi (1.7 g protein/100 mL) or a non-fortified CM (3.1 g protein/100 mL) for 12 months. Blood sampling and anthropometric measurements were made at 1 and 2 y. Diet was assessed using a validated food frequency questionnaire. Total protein intake (g/d) from all cow’s milk sources was 4.6 g (95% CI -6.7, -2.4; p less then 0.005) lower in the GUMLi group after 12 months of the intervention, with a significant group-by-time interaction (p = 0.