Activity

  • Levy Kidd posted an update 3 months, 2 weeks ago

    To evaluate the effect of different concentrations of ethylene-diamine-tetra acetic acid (EDTA) on bond strength (BS) and nanoleakage (NL) of fiber posts bonded into root canals.

    Seventy-two single roots were endodontically treated and divided into six groups (n = 12), according to the combination of the following factors surface treatment (no irrigation [control], 17% EDTA, or 24% EDTA), and composite cement applied with an adhesive used in a self-etch mode (Single Bond Universal/RelyX Ultimate [SB], 3M Oral Care; Ambar Universal/Allcem [AM], FGM). learn more After fiber post cementation, six 1-mm-thick disks were obtained for each root. Push-out bond strength (BS) was evaluated using 8 specimens per group, and the other 4 specimens were used to examine nanoleakage (NL). Data from BS and NL of each adhesive were evaluated by two-way ANOVA (surface treatment vs root region) and Tukey’s test (α = 0.05).

    The application of 17% and 24% EDTA did not influence the bond strengths of either adhesive. In general, the application of 17% and 24% EDTA increased NL values for both adhesives.

    Pre-treatment with different concentrations of EDTA was not able to improve the adhesion of fiber posts into root canals with universal adhesives..

    Pre-treatment with different concentrations of EDTA was not able to improve the adhesion of fiber posts into root canals with universal adhesives..

    The pretreatment of glass-ceramic before adhesive cementation can be performed with hydrofluoric acid (HF)/silanization (S) or with an ammonium polyfluoride-containing primer (APF). It can be modified by application of a silane-containing universal adhesive (UA) and/or additional silanization. The aim of this study was to evaluate the bond strength of composite cements to two different glass ceramics after different pretreatments and aging.

    Disks of leucite-reinforced glass-ceramic or lithium-disilicate glass-ceramic were pretreated with HF+S, HF+UA, HF+S+UA, APF, or APF+S, bonded in pairs with composite cement and sectioned into microsticks (n = 96/group). The microtensile bond strength was determined either after 24 h (n = 48) or after aging for 6 months in water (n = 48). Fracture patterns were analyzed at 50X magnification. Statistical evaluation was performed using the Kruskal-Wallis test, pairwise comparisons with Bonferroni’s correction, and the chi-squared test (p < 0.05).

    Pretreatment with Hal pretreatment with hydrofluoric acid. Additive silanization improves the long-term stability of the microtensile bond strength.

    The effect of surface moisture on bur-cut dentin on the microtensile bond strength (μTBS) of universal adhesives with various contents of 2-hydroxyethyl methacrylate (HEMA) and methacrylamide monomers was evaluated.

    Flat mid-coronal dentin surfaces of human molars were exposed, and a standardized smear layer was prepared using a fine-grit diamond bur. The surfaces were either left wet or air dried for 10 s before bonding with Clearfil Universal Bond Quick (UBQ), experimental UBQ without an amide monomer (UBQexp), Scotchbond Universal (SBU), Prime&Bond Universal (PBU), or BeautiBond Universal (BBU). The specimens were built up with resin composite, sectioned into sticks and subjected to the μTBS test after 24 h or 10,000 thermal cycles. The μTBS data were analyzed using three-way ANOVA followed by pairwise comparisons with Bonferroni’s correction (α = 0.05).

    The level of dentin moisture did not significantly affect μTBS of UBQ and BBU (p > 0.05). HEMA-containing UBQ, UBQexp, and SBU exhibited highn.

    To compare the effect of different methods of cleaning residual composite cement from the surface of lithium-disilicate glass-ceramic on its bond strength.

    Blocks of lithium-silicate glass-ceramic (e.max CAD) were coated with composite cement. Blocks in a positive control (CO+) group received no cement; negative controls (CO-) received composite cement. After water storage (24 h), specimens were cleaned as follows (n = 20/group) BUR grinding with a fine-grit diamond bur (20 s); ALUM air abrasion with 50-µm alumina (10 s); GLASS air abrasion with 50-µm glass beads (10 s); FURN firing in ceramic furnace and cleaning with ethanol; SULF immersion in sulfonic acid solution (1 h); HYFL no additional treatment. All specimens were etched with hydrofluoric acid, aside from the CO- group, and treated with silane. A 1.5-mm diameter cement-filled tube was affixed to the specimens and light polymerized. Specimens were stored in 37°C water for 24 h (n = 10) or 90 days (n = 10). Shear bond strength was tested. Two-way ANOVA and post-hoc Tukey tests were performed. Specimens from each group were examined with SEM.

    Bond strength significantly differed according to surface cleaning method (p < 0.01) and storage time (p < 0.01), but their interaction was not significant (p = 0.264). Longer storage time decreased the bond strength. BUR, ALUM, GLASS, and FURN did not differ statistically significantly from CO+, but were significantly greater than CO-. SULF and HYFL did not differ statistically significantly from CO- and were significantly lower than CO+.

    Cleaning composite cement with BUR, ALUM, GLASS, and FURN restored bond strengths to that of the positive control. However, only GLASS and FURN did not roughen the surface of the underlying lithium-silicate glass-ceramic.

    Cleaning composite cement with BUR, ALUM, GLASS, and FURN restored bond strengths to that of the positive control. However, only GLASS and FURN did not roughen the surface of the underlying lithium-silicate glass-ceramic.

    Thanks to adhesive techniques and strengthened glass ceramics, ultrathin bonded occlusal veneers have been recently introduced. However, since a universally accepted thickness limit for ultrathin ceramics has yet to be established, their resistance to fracture needs to be better investigated. The purpose of this in vitro study was to evaluate the effect of dentin bonding on the flexural properties (ie, fracture load and flexural strength) of a lithium-disilicate (LD) glass ceramic when used in thicknesses equal to or less than the manufacturer’s recommendations for occlusal restorations.

    A total of 96 dentin slices (2.0 mm thick and 15 mm long) were obtained by sectioning bovine teeth along their long axes. LD slices of different thicknesses (1.5 mm/1.3 mm/1.0 mm/0.8 mm/0.6 mm) and 15 mm in length were cut from CAD/CAM LD blocks (IPS e.max CAD-C16). In each of 5 experimental groups, 16 dentin slices were adhesively luted to 16 LD slices (n = 16) of the same thickness, in order to create 16 bi-layered dentin-LD bonded assemblies.

To Top