-
Holloway Just posted an update 3 months, 2 weeks ago
effect is better and rapid in smaller hamartoma (Type I-III) and seizure outcome was not affected by the invaded hypothalamic areas.
Clinical presentation of epileptic hypothalamic hamartoma is significantly affected by fine topography patterns and invaded hypothalamic areas. Gamma Knife Radiosurgery effect is better and rapid in smaller hamartoma (Type I-III) and seizure outcome was not affected by the invaded hypothalamic areas.Brain metastases from renal cell carcinoma are associated with poor prognosis. Sunitinib is a multi-targeted tyrosine kinase inhibitor used for the treatment of metastatic renal cell carcinoma. It is taken orally on a traditional dosing schedule of 4-week on/2-week off cycles or an alternate dosing schedule of 2-week on/1-week off cycles. Although patients with brain metastases were excluded from the original phase 3 sunitinib registration trial, case reports and an expanded access trial suggest that sunitinib penetrates the blood brain barrier and has central nervous system (CNS) activity. We present a case report which illustrates an unusual presentation of symptomatic brain metastasis progression during the prescribed breaks in treatment during sunitinib monotherapy, and rapid clinical improvement upon resuming sunitinib during the cycle. Patients who develop increased symptoms during the “off treatment” period of sunitinib therapy may have new sites of metastasis. In such patients, appropriate imaging should be obtained to evaluate for disease progression and either a continuous sunitinib dosing schedule or an alternative therapy should be considered.In this study, anaerobic digestion of waste-activated sludge was bioaugmented with hydrolytic bacteria, Bacteroidetes uniformis (Bacteroidetes, B) and Clostridium sp. (Firmicutes, F) at various dosages. Bioaugmentation resulted in enhanced methane conversion of waste-activated sludge. The highest methane yield of 298.1 mL CH4/g-COD, 85.2% COD conversion efficiency was obtained when Bacteroidetes uniformis and Clostridium sp. were augmented at 100 and 900 CFU/mL, respectively. The microbial community analysis demonstrated that bioaugmentation increased the proportion of Bacteroidetes, Firmicutes, and Proteobacteria. Furthermore, at the highest methane yield, the principal methanogenic pathway was altered from acetoclastic to a mixture of hydrogenotrophic and acetoclastic; the major species shifted from Methanosaeta concilii to Methanobacterium subterraneum. Predicted gene analysis revealed that increased expression of hydrolases resulted in enhanced methane conversion through bioaugmentation.This study was devoted to proposing an effective experimental method based on bio-oil composition inversion for understanding biomass pyrolysis vapor evolution in four-staged condensers. The effective length of each condenser was 200 mm. The evolution curves and heat maps of condensable vapors in the whole multi-staged condensing field were provided by Logistics model fitting. With changing condition from “365-345-325-305” to “345-325-305-285”, the condensing efficiency of the first condenser increased by 100% but that of the third condenser decreased by 80%. Under condition “365-345-325-305”, the largest recovery rate of water was observed at 400 mm away from multi-staged condensing field entrance while that of eugenol was observed at 50 mm away from the entrance, which explained that water was primarily recovered by the second and third condensers whereas eugenol was recovered by the first condenser, and verified the remarkable effect of fractional condensation on the separation of water and high-boiling phenols.This study evaluated the effect of bioaugmentation of a newly enriched electroactive bacterial community DC5 on the performance of a pilot scale sequential two-step Horizontal Sub-surface flow Constructed Wetland-Microbial Fuel Cell (HSCW-MFC) system treating textile dye wastewater. The system consisted of CW-MFC-1 planted with Fimbristylis ferruginea and CW-MFC-2 planted with consortium of Fimbristylis ferruginea and Elymus repens plant species. Before bioaugmentation, HSCW-MFC system showed 62 ± 2% Chemical Oxygen Demand (COD) and 90 ± 1.5% American Dye Manufacturer’s Institute (ADMI) removal and 177.3 mW/m2 maximum power density (CW-MFC-1). MK-8776 After bioaugmentation of DC5 into the HSCW-MFC, COD and ADMI removal was enhanced to 74.10 ± 1.75% and 97.32 ± 1.90% with maximum power density of 197.94 mW/m2 (CW-MFC-1). The genera Exiguobacterium, Desulfovibrio and Macellibacteroides of DC5 were significantly enriched at the electrodes of HSCW-MFC after bioaugmentation. These results demonstrate that the performance of the CW-MFC treating textile dye wastewater can be improved by bioaugmentation of electroactive bacterial community.Thraustochytrids have predominantly been grown on hydrophilic substrates i.e. by “de novo” fermentation. The fatty acid composition of thraustochytrids oil in “de novo” mode is enriched in saturated palmitic acid and polyunsaturated docosahexaenoic acid. The “ex novo” fermentation of a novel Aurantiochytrium limacinum ICTSG-17 with waste acid oil altered the fatty acid composition of produced oil. This led to increased total unsaturated fatty acids (TUFA) and concomitant decrease in the total saturated fatty acids (TSFA) resulting in higher TUFA/TSFA ratio. However, cell growth and DHA content in “ex novo” were lower than that of “de novo” fermentation. Integration of “de novo” and “ex novo” fermentation modes were devised to attain high biomass and lipids enriched in DHA. Sequential “de novo”-“ex novo” fermentation resulted in ~20 g/L biomass and ~40% DHA content and higher TUFA/TSFA ratio as compared to that of “de novo” mode.Methanotrophs can oxidize methane as the sole carbon and energy, and the resulting intermediate products can be simultaneously utilized by coexistent denitrifying bacteria to remove the nitrogen, which named Aerobic Methane Oxidation Coupled to Denitrification (AME-D). In this paper, an AME-D system was built in an improved denitrification bio-filter, to analyze the nitrogen removal efficiency and mechanism. The maximum TN removal rate reached 95.05%. As shown in Raman spectroscopy, in the effluent wave crests generated by the symmetric expansion and contraction of NO3- disappeared, and the distortion of olefin CH2 and C-OH stretching of alcohols appeared. Metagenomics revealed Methylotenera and Methylobacter were the dominated methanotrophs. There was a completed methane and nitrogen metabolism pathway with the synergism of nxrAB, narGHI, nasAB, pmo-amoABC and mmo genes. Dissimilatory reduction pathway was the primary nitrate removal pathway. Moreover, Bradyrhizobium could participate in methane and nitrogen metabolism simultaneously.