-
Kara Poe posted an update 3 months, 2 weeks ago
There is inconsistent evidence regarding the impact of added sugars consumption on micronutrient dilution of the diet. We examined the associations between added sugars intake deciles and nutrient adequacy for 17 micronutrients in U.S. adults 19+ (n = 13,949), 19-50 (n = 7424), and 51+ y (n = 6525) using two days of 24 hour dietary recall data from the National Health and Nutrition Examination Survey (NHANES) 2009-2014 and regression analysis. Added sugars intake deciles ranged from 23.3% of calories among adults 19+ y, with a median intake of 11.0% of calories. Significant associations (p ≤ 0.01) between added sugars intake deciles and percentage of the population below the Estimated Average Requirement (EAR) were found for magnesium, vitamin C, vitamin D, and vitamin E; only the association with magnesium remained significant after dropping the two highest and lowest deciles of intake, suggesting a threshold effect. Intakes below approximately 18% of calories from added sugars were generally not associated with micronutrient inadequacy. However, even at the lower deciles of added sugars, large percentages of the population were below the EAR for these four micronutrients, suggesting that adequate intakes are difficult to achieve regardless of added sugars intake.Parkinson’s disease (PD) is the most common movement disorder with motor and nonmotor signs. The current therapeutic regimen for PD is mainly symptomatic as the etio-pathophysiology has not been fully elucidated. A variety of animal models has been generated to study different aspects of the disease for understanding the pathogenesis and therapeutic development. The disease model can be generated through neurotoxin-based or genetic-based approaches in a wide range of animals such as non-human primates (NHP), rodents, zebrafish, Caenorhabditis (C.) elegans, and drosophila. Cellular-based disease model is frequently used because of the ease of manipulation and suitability for large-screen assays. In neurotoxin-induced models, chemicals such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, and paraquat are used to recapitulate the disease. Genetic manipulation of PD-related genes, such as α-Synuclein(SNCA), Leucine-rich repeat kinase 2 (LRRK2), Pten-Induced Kinase 1 (PINK1), Parkin(PRKN), and Protein deglycase (DJ-1) Are used in the transgenic models. An emerging model that combines both genetic- and neurotoxin-based methods has been generated to study the role of the immune system in the pathogenesis of PD. Here, we discuss the advantages and limitations of the different PD models and their utility for different research purposes.The biofilm component poly-N-acetylglucosamine (PNAG) is an important virulence determinant in medical-device-related infections caused by ESKAPE group pathogens including Gram-positive Staphylococcus aureus and Gram-negative Acinetobacter baumannii. PNAG presentation on bacterial cell surfaces and its accessibility for host interactions are not fully understood. We employed a lectin microarray to examine PNAG surface presentation and interactions on methicillin-sensitive (MSSA) and methicillin-resistant S. aureus (MRSA) and a clinical A. baumannii isolate. Purified PNAG bound to wheatgerm agglutinin (WGA) and succinylated WGA (sWGA) lectins only. PNAG was the main accessible surface component on MSSA but was relatively inaccessible on the A. baumannii surface, where it modulated the presentation of other surface molecules. Carbohydrate microarrays demonstrated similar specificities of S. aureus and A. baumannii for their most intensely binding carbohydrates, including 3′ and 6’sialyllactose, but differences in moderately binding ligands, including blood groups A and B. An N-acetylglucosamine-binding lectin function which binds to PNAG identified on the A. baumannii cell surface may contribute to biofilm structure and PNAG surface presentation on A. baumannii. Overall, these data indicated differences in PNAG presentation and accessibility for interactions on Gram-positive and Gram-negative cell surfaces which may play an important role in biofilm-mediated pathogenesis.DNA methylation analysis of full void urine and urine pellet seems promising for bladder cancer (BC) detection and surveillance. WAY-309236-A research buy Urinary cell-free DNA from urine supernatant is now gaining interest for other molecular tests in BC. This study aims to evaluate which urine fraction is preferred for BC diagnosis using methylation markers full void urine, urine pellet or supernatant. Methylation levels of nine markers were determined in the three urine fractions and correlated with their respective tumor tissues in BC patients and compared to controls. For all markers and marker panel GHSR/MAL, diagnostic performance was determined by calculating the area under the curve (AUC) of the respective receiver operating characteristic curves. For most of the markers, there was a significant correlation between the methylation levels in each of the urine fractions and the matched tumor tissues. Urine pellet was the most representative fraction. Generally, AUCs for BC diagnosis were comparable among the fractions. The highest AUC was obtained for GHSR/MAL in urine pellet AUC 0.87 (95% confidence interval 0.73-1.00), corresponding to a sensitivity of 78.6% and a specificity of 91.7%. Our results demonstrate that cellular and cell-free DNA in urine can be used for BC diagnosis by urinary methylation analysis. Based on our comparative analysis and for practical reasons, we recommend the use of urine pellet.This pilot study presents the effects on acquisition of pre-writing skills of educational activities targeting visual-motor integration and fine motor skills on a convenient sample of first graders. After a 10-week intervention program, visual perceptual skills and fine motor control were tested on 13 six-year-old aged children. Participants completed the Beery-Buktenica VMI and the manual dexterity scale of the Movement ABC-2 at baseline (T1), after the intervention program (T2), and one month after the end of the educational activities (T3). Children’s writing pressure, frequency, and automaticity were measured using a digitizer during the administration of name writing test at T1, T2, and T3. The purpose of the study was to investigate changes in visual-perceptual abilities and fine motor skills after the intervention program and examine correlational effects on children’s kinematic writing performances. Findings reveal that educational activities impacted positively on children’s visual motor coordination component of writing improving VMI scores.