Activity

  • Dreyer Pettersson posted an update 3 months, 2 weeks ago

    The auditory brainstem response (ABR) to stimulus onset has been extensively used to investigate dolphin hearing. The mechanisms underlying this onset response have been thoroughly studied in mammals. In contrast, the ABR evoked by sound offset has received relatively little attention. To build upon previous observations of the dolphin offset ABR, a series of experiments was conducted to (1) determine the cochlear places responsible for response generation and (2) examine differences in response morphologies when using toneburst versus noiseburst stimuli. Measurements were conducted with seven bottlenose dolphins (Tursiops truncatus) using tonebursts and spectrally “pink” broadband noisebursts, with highpass noise used to limit the cochlear regions involved in response generation. Results for normal-hearing and hearing-impaired dolphins suggest that the offset ABR contains contributions from at least two distinct responses. One type of response (across place) might arise from the activation of neural units that are shifted basally relative to stimulus frequency and shares commonalities with the onset ABR. A second type of response (within place) appears to represent a “true” offset response from afferent centers further up the ascending auditory pathway from the auditory nerve, and likely results from synchronous activity beginning at or above the cochlear nucleus.Materials design and discovery are often hampered by the slow pace and materials and human costs associated with Edisonian trial-and-error screening approaches. Recent advances in computational power, theoretical methods, and data science techniques, however, are being manifest in a convergence of these tools to enable in silico materials discovery. Here, we present the development and deployment of computational materials data and data analytic approaches for crystalline organic semiconductors. The OCELOT (Organic Crystals in Electronic and Light-Oriented Technologies) infrastructure, consisting of a Python-based OCELOT application programming interface and OCELOT database, is designed to enable rapid materials exploration. The database contains a descriptor-based schema for high-throughput calculations that have been implemented on more than 56 000 experimental crystal structures derived from 47 000 distinct molecular structures. OCELOT is open-access and accessible via a web-user interface at https//oscar.as.uky.edu.Vibrational predissociation processes of the H2O+Ar complex ion following mid-infrared excitations of the OH stretching modes and bending overtone of the H2O+ unit were studied by photofragment ion imaging. The anisotropy parameters, β, of the angular distributions of the photofragment ions were clearly dependent on the type (branch) of rotational excitation, β > 0 for the P-branch excitations, while β less then 0 for the Q-branch excitations, which were consistent with the previous theoretical predictions for the rotationally resolved optical transition of a prolate symmetric top. The translational energy distributions had a similar form, irrespective of the excitation modes. This result suggests that the prepared excited states underwent a common relaxation pathway via the bending or bending overtone state of the H2O+ unit. In addition, the available energy was preferentially distributed into the rotational energy of the H2O+ fragment ions rather than the translational energy. The mechanism of the rotational excitations of the H2O+ fragment ions was discussed based on the steric configuration of the H2O+ and Ar units at the moment of dissociation.The solid electrolyte interphase (SEI) is an insulating film on anode surfaces in Li-ion batteries, which forms via the reaction of Li ions with reduced electrolyte species. The SEI leads to a reduction in the electrochemical current in heterogeneous electrochemical redox reactions at the electrode/electrolyte interface. Hence, the growth of the SEI is, in principle, self-limited. Toward our ultimate goal of an improved understanding of SEI formation, we develop a baseline quantitative model within Butler-Volmer electrode kinetics, which describes the cyclic voltammetry (CV) of a flat macroelectrode during SEI growth. Here, the SEI building up electrochemically during CV forms a homogeneous single-phase electronically insulating thin film due to the corresponding current. The model is based on a dynamically evolving electron tunneling barrier with increasing film thickness. Our objective is to provide a framework, which allows for both the qualitative, intuitive interpretation of characteristic features of CV measurements and the quantitative extraction of physicochemical parameters via model fitting. NSC 627609 We also discuss the limitations of the baseline model and give a brief outlook for improvements. Finally, comparisons to exemplary CVs from the literature relevant to Li-ion battery science are presented.Ionization potential and electron affinity are essential molecular properties. The most straightforward method is to calculate them by taking the total energy differences of the initial and final states according to the definition. However, it often suffers from a serious convergence problem due to the requirement of the self-consistent field (SCF) calculations for the ionic states with non-Aufbau choices of occupations. In the present work, we have constructed a theoretical framework in view of perturbation theory to bypass the SCF calculations of the ionic states. To address the imbalance issue that arises from the precisely treated neutral ground state followed by the truncated perturbative treatment of the ionic states, an accurate yet effective method has been developed here, which adds back some terms from the higher order perturbations into the lower order to cancel out the most computationally cost terms in the truncated expansion, thus reaching a better convergence with less computation. The validity of the present methodology has been tested out by applying it to the Hartree-Fock (HF) method in combination with the correlation effect described at the second-order Møller-Plesset level in a frozen-orbital approximation. All the derivations in this work are given in a general framework, which are applicable not only to HF but also to a wide range of density functional theory methods from semi-local functionals to hybrid and doubly hybrid functionals.

To Top