-
Casey Forsyth posted an update 3 months, 2 weeks ago
Copper and zinc have a high binding affinity with a Staphylococcus aureus bacterial community. This causes a change in the biomolecular composition of S. aureus. selleck products Our study aims at understanding the resistance mechanism of Cu and Zn either or in various combinations using FTIR and chemometric techniques. Zn toxicity resulted in a significant change in lipid content (3100-2800 cm-1) compared to Cu. A significant decrease in protein content is observed for Cu treatment in the amide region. The bio-concentration factor shows a higher value for Cu compared to Zn. The increase in band area of carbohydrates moieties 1059 cm-1 shows the secretion of EPS due to Cu toxicity. A significant change in nucleic acid compositions was noted in the region1200-900 cm-1 due to Zn treatment. Secondary structural change in protein shows β sheet formation. The result of the finding shows Cu has greater toxicity than Zn. Further toxicity effects were greatly enhanced for metal mixtures ratio (Cu2Zn). This shows Zn exhibits synergism effect with Cu. The obtained ROC (receiver operating characteristic) curve area gives good reliability of the experiments. The study attempts to understand the mechanism of toxicity removal of Cu and Zn metal mixtures by bacterial population using FTIR coupled with chemometric techniques. Graphical abstract.Reliability engineering concerned with failure of technical inanimate systems usually uses the vocabulary and notions of human mortality, e.g., infant mortality vs. senescence mortality. Yet, few data are available to support such a parallel description. Here, we focus on early-stage (infant) mortality for two inanimate systems, incandescent light bulbs and soap films, and show the parallel description is clearly valid. Theoretical considerations of the thermo-electrical properties of electrical conductors allow us to link bulb failure to inherent mechanical defects. We then demonstrate the converse, that is, knowing the failure rate for an ensemble of light bulbs, it is possible to deduce the distribution of defects in wire thickness in the ensemble. Using measurements of lifetimes for soap films, we show how this methodology links failure rate to geometry of the system; in the case presented, this is the length of the tube containing the films. In a similar manner, for a third example, the time-dependent death rate due to congenital aortic valve stenosis is related to the distribution of degrees of severity of this condition, as a function of time. The results not only validate clearly the parallel description noted above, but also point firmly to application of the methodology to humans, with the consequent ability to gain more insight into the role of abnormalities in infant mortality.
Nosocomial infection contributes to adverse outcome after brain injury. This study investigates whether autonomic nervous system activity is associated with a decreased host immune response in patients following stroke or traumatic brain injury (TBI).
A prospective study was performed in adult patients with TBI or stroke who were admitted to the Intensive Care Unit of our tertiary university hospital between 2013 and 2016. Heart rate variability (HRV) was recorded daily and assessed for autonomic nervous system activity. Outcomes were nosocomial infections and immunosuppression, which was assessed ex vivo using whole blood stimulations with plasma of patients with infections, matched non-infected patients and healthy controls.
Out of 64 brain injured patients, 23 (36%) developed an infection during their hospital stay. The ability of brain injured patients to generate a host response to the bacterial endotoxin lipopolysaccharides (LPS) was diminished compared to healthy controls (p < 0.001). Patientsd by alterations in HRV, which parallels a decreased ability to generate an immune response to stimulation with LPS.The coordinated action of DNA polymerases and DNA helicases is essential at genomic sites that are hard to replicate. Among these are sites that harbour G-quadruplex DNA structures (G4). G4s are stable alternative DNA structures, which have been implicated to be involved in important cellular processes like the regulation of gene expression or telomere maintenance. G4 structures were shown to hinder replication fork progression and cause genomic deletions, mutations and recombination events. Many helicases unwind G4 structures and preserve genome stability, but a detailed understanding of G4 replication and the re-start of stalled replication forks around formed G4 structures is not clear, yet. In our recent study, we identified that Mgs1 preferentially binds to G4 DNA structures in vitro and is associated with putative G4-forming chromosomal regions in vivo. Mgs1 binding to G4 motifs in vivo is partially dependent on the helicase Pif1. Pif1 is the major G4-unwinding helicase in S. cerevisiae. In the absence of Mgs1, we determined elevated gross chromosomal rearrangement (GCR) rates in yeast, similar to Pif1 deletion. Here, we highlight the recent findings and set these into context with a new mechanistic model. We propose that Mgs1’s functions support DNA replication at G4-forming regions.The search for effective and bioactive antimicrobial molecules to encounter the medical need for new antibiotics is an encouraging area of research. Plant defensins are small cationic, cysteine-rich peptides with a stabilized tertiary structure by disulfide-bridges and characterized by a wide range of biological functions. The heterologous expression of Egyptian maize defensin (MzDef) in Escherichia coli and subsequent purification by glutathione affinity chromatography yielded 2 mg/L of recombinant defensin peptide. The glutathione-S-transferase (GST)-tagged MzDef of approximately 30 kDa in size (26 KDa GST + ~ 4 KDa MzDef peptide) was immunodetected with anti-GST antibodies. The GST-tag was successfully cleaved from the MzDef peptide by thrombin, and the removal was validated by the Tris-Tricine gel electrophoresis. The MzDef induced strong growth inhibition of Rhizoctonia solani, Fusarium verticillioides, and Aspergillus niger by 94.23%, 93.34%, and 86.25%, respectively, whereas relatively weak growth inhibitory activity of 35.