-
Galloway Greene posted an update 3 months, 2 weeks ago
The usefulness of PET/MRI in head and neck malignancy has not been fully elucidated. The purpose of our study was to evaluate the diagnostic accuracy and confidence of PET/MRI in comparison with PET or MRI alone. This study included 73 consecutive patients who underwent [18F] FDG PET/MRI in head and neck under the suspicion of malignancy. A neuroradiologist and a nuclear medicine specialist reviewed MRI and PET images, respectively and independently, followed by a consensus review of PET/MRI one month later. For 134 lesions, accuracy and confidence were compared among PET, MRI, and PET/MRI. For lesion base, PET/MRI had a sensitivity of 85.7%, a specificity of 89.1%, a PPV of 89.6%, a negative predictive value of 85.1%, and an accuracy of 87.3%. AUCs of PET/MRI per lesion (0.926) and per patient (0.934) for diagnosing malignancy were higher than PET (0.847 and 0.747, respectively) or MRI (0.836 and 0.798, respectively) alone (P less then 0.05). More than 80% of the cases (111/134) showed diagnostic concordance between PET and MRI. PPV of PET/MRI was higher in malignant concordant cases (93.2%, 55/59) than in discordant cases (62.5%, 5/8) (p = 0.040). Confident scoring rate in malignant concordant cases was higher on PET/MRI (96.6%, 57/59) than on MRI (76.3%, 45/59) (p = 0.003). Entinostat solubility dmso In conclusion, compared with PET or MRI alone, PET/MRI presents better diagnostic performance in accuracy and confidence for diagnosis of malignancy. PET/MRI is useful in patients with head and neck cancer.Zr-based metallic glasses are prepared by quenching supercooled liquid under pressure. These glasses are stable in ambient conditions after decompression. The High Pressure Quenched glasses have a distinct structure and properties. The pair distribution function shows redistribution of the Zr-Zr interatomic distances and their shift towards smaller values. These glasses exhibit higher density, hardness, elastic modulus, and yield stress. Upon heating at ambient pressure, they show volume expansion and distinct relaxation behavior, reaching an equilibrated state above the glass transition. These experimental results are consistent with an idea of pressure-induced low to high density liquid transition in the supercooled melt.Central corneal thickness (CCT) is one of the most heritable human traits, with broad-sense heritability estimates ranging between 0.68 to 0.95. Despite the high heritability and numerous previous association studies, only 8.5% of CCT variance is currently explained. Here, we report the results of a multiethnic meta-analysis of available genome-wide association studies in which we find association between CCT and 98 genomic loci, of which 41 are novel. Among these loci, 20 were significantly associated with keratoconus, and one (RAPSN rs3740685) was significantly associated with glaucoma after Bonferroni correction. Two-sample Mendelian randomization analysis suggests that thinner CCT does not causally increase the risk of primary open-angle glaucoma. This large CCT study explains up to 14.2% of CCT variance and increases substantially our understanding of the etiology of CCT variation. This may open new avenues of investigation into human ocular traits and their relationship to the risk of vision disorders.Biomembranes are two-dimensional assemblies of phospholipids that are only a few nanometres thick, but form micrometre-sized structures vital to cellular function. Explicit molecular modelling of biologically relevant membrane systems is computationally expensive due to the large number of solvent particles and slow membrane kinetics. Coarse-grained solvent-free membrane models offer efficient sampling but sacrifice realistic kinetics, thereby limiting the ability to predict pathways and mechanisms of membrane processes. Here, we present a framework for integrating coarse-grained membrane models with continuum-based hydrodynamics. This framework facilitates efficient simulation of large biomembrane systems with large timesteps, while achieving realistic equilibrium and non-equilibrium kinetics. It helps to bridge between the nanometer/nanosecond spatiotemporal resolutions of coarse-grained models and biologically relevant time- and lengthscales. As a demonstration, we investigate fluctuations of red blood cells, with varying cytoplasmic viscosities, in 150-milliseconds-long trajectories, and compare kinetic properties against single-cell experimental observations.To discuss combinations of traditional screening and noninvasive prenatal screening (NIPS) and to compare which traditional screening is the most suitable first-line screening approach to NIPS, pregnant women were recruited in this retrospective observational study. Pregnant women underwent one of four traditional screening tests. The 9 contingent models were combined by high risk cut-offs of 150, 1100, 1270 and intermediate risk cut-offs of 11000, 11500, 12000. We analyzed cost and performance of various screening models with contingent screening of different risk cut-offs. Compared with other screening tests, combined first-trimester screening (CFTS) had the lowest proportion of high risk (≥1270) with the highest detection rate (DR) (78.79%) and the lowest proportion of intermediate risk (1271~11000). When intermediate risk was 151 ~11500, CFTS as first-line screening had the lowest cost with DR of 93.94%. Other screening tests as the first-line screening with intermediate risk of 151~11000 had the lowest cost, there DR were 90.91%, 84.62%, 91.67%, respectively. Our study demonstrated if only one traditional screening was allowed to screen pregnant women, CFTS was recommended as the first choice. According to local health and economic conditions, adopting appropriate traditional screening with suitable cut-offs as first-line screening will contributed to a cost-effective screening model.Increasingly, public-health agencies are using pathogen genomic sequence data to support surveillance and epidemiological investigations. As access to whole-genome sequencing has grown, greater amounts of molecular data have helped improve the ability to detect and track outbreaks of diseases such as COVID-19, investigate transmission chains and explore large-scale population dynamics, such as the spread of antibiotic resistance. However, the wide adoption of whole-genome sequencing also poses new challenges for public-health agencies that must adapt to support a new set of expertise, which means that the capacity to perform genomic data assembly and analysis has not expanded as widely as the adoption of sequencing itself. In this Perspective, we make recommendations for developing an accessible, unified informatic ecosystem to support pathogen genomic analysis in public-health agencies across income settings. We hope that the creation of this ecosystem will allow agencies to effectively and efficiently share data, workflows and analyses and thereby increase the reproducibility, accessibility and auditability of pathogen genomic analysis while also supporting agency autonomy.