Activity

  • Lundqvist Pennington posted an update 3 months, 2 weeks ago

    High soil K levels mitigated loss of water from leaves in the cold and supported cold-dependent sugar and sorbitol accumulation. We hypothesize that with increased K nutrition, P. major preferentially channels photosynthesis-derived electrons into sorbitol biosynthesis and that this increased sorbitol is supportive for sink development and as a protective solute, during abiotic stress.Quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay is the gold standard recommended to test for acute SARS-CoV-2 infection. However, it generally requires expensive equipment such as RNA isolation instruments and real-time PCR thermal cyclers. As a pandemic, COVID-19 has spread indiscriminately, and many low resource settings and developing countries do not have the means for fast and accurate COVID-19 detection to control the outbreak. Additionally, long assay times, in part caused by slow sample preparation steps, have created a large backlog when testing patient samples suspected of COVID-19. With many PCR-based molecular assays including an extraction step, this can take a significant amount of time and labor, especially if the extraction is performed manually. Using COVID-19 clinical specimens, we have collected evidence that the RT-qPCR assay can feasibly be performed directly on patient sample material in virus transport medium (VTM) without an RNA extraction step, while still producing sensitive test results. If RNA extraction steps can be omitted without significantly affecting clinical sensitivity, the turn-around time of COVID-19 tests, and the backlog we currently experience can be reduced drastically. Furthermore, our data suggest that rapid RT-PCR can be implemented for sensitive and specific molecular diagnosis of COVID-19 in locations where sophisticated laboratory instruments are not available. Our USD 300 set up achieved rapid RT-PCR using thin-walled PCR tubes and a water bath setup using sous vide immersion heaters, a Raspberry Pi computer, and a single servo motor that can process up to 96 samples at a time. Using COVID-19 positive clinical specimens, we demonstrated that RT-PCR assays can be performed in as little as 12 min using untreated samples, heat-inactivated samples, or extracted RNA templates with our low-cost water bath setup. These findings can help rapid COVID-19 testing to become more accessible and attainable across the globe.Paramagnetic metal ion complexes, mostly based on gadolinium (Gd3+), have been used for over 30 years as magnetic resonance imaging (MRI) contrast agents. Gd3+-based contrast agents have a strong influence on T1 relaxation times and are consequently the most commonly used agents in both the clinical and research environments. Zinc is an essential element involved with over 3000 different cellular proteins, and disturbances in tissue levels of zinc have been linked to a wide range of pathologies, including Alzheimer’s disease, prostate cancer, and diabetes mellitus. MR contrast agents that respond to the presence of Zn2+ in vivo offer the possibility of imaging changes in Zn2+ levels in real-time with the superior spatial resolution offered by MRI. Such responsive agents, often referred to as smart agents, are typically composed of a paramagnetic metal ion with a ligand encapsulating it and one or more chelating units that selectively bind with the analyte of interest. Translation of these agents into clinical radiology is the next goal. In this review, we discuss Gd3+-based MR contrast agents that respond to a change in local Zn2+ concentration.The precise kinetic pathways of peptide clustering and fibril formation are not fully understood. Here we study the initial clustering kinetics and transient cluster morphologies during aggregation of the heptapeptide fragment GNNQQNY from the yeast prion protein Sup35. We use a mid-resolution coarse-grained molecular dynamics model of Bereau and Deserno to explore the aggregation pathways from the initial random distribution of free monomers to the formation of large clusters. By increasing the system size to 72 peptides we could follow directly the molecular events leading to the formation of stable fibril-like structures. To quantify those structures we developed a new cluster helicity parameter. We found that the formation of fibril-like structures is a cooperative processes that requires a critical number of monomers, M⋆≈25, in a cluster. The terminal tyrosine residue is the structural determinant in the formation of helical fibril-like structures. learn more This work supports and quantifies the two-step aggregation model where the initially formed amorphous clusters grow and, when they are large enough, rearrange into mature twisted structures. However, in addition to the nucleated fibrillation, growing aggregates undergo further internal reorganization, which leads to more compact structures of large aggregates.The acquisition of antibiotic resistance (AR) by foodborne pathogens, such as Salmonella enterica, has emerged as a serious public health concern. The relationship between the two key survival mechanisms (i.e., antibiotic resistance and virulence) of bacterial pathogens is complex. However, it is unclear if the presence of certain virulence determinants (i.e., virulence genes) and AR have any association in Salmonella. In this study, we report the prevalence of selected virulence genes and their association with AR in a set of phenotypically tested antibiotic-resistant (n = 117) and antibiotic-susceptible (n = 94) clinical isolates of Salmonella collected from Tennessee, USA. Profiling of virulence genes (i.e., virulotyping) in Salmonella isolates (n = 211) was conducted by targeting 13 known virulence genes and a gene for class 1 integron. The association of the presence/absence of virulence genes in an isolate with their AR phenotypes was determined by the machine learning algorithm Random Forest. The analysis revealed that Salmonella virulotypes with gene clusters consisting of avrA, gipA, sodC1, and sopE1 were strongly associated with any resistant phenotypes. To conclude, the results of this exploratory study shed light on the association of specific virulence genes with drug-resistant phenotypes of Salmonella. The presence of certain virulence genes clusters in resistant isolates may become useful for the risk assessment and management of salmonellosis caused by drug-resistant Salmonella in humans.

To Top