-
Odgaard Carrillo posted an update 3 months, 3 weeks ago
Bulk inorganic materials play important roles in human society, and their construction is commonly achieved by the coalescence of inorganic nano- or micro-sized particles. Understanding the coalescence process promotes the elimination of particle interfaces, leading to continuous bulk phases with improved functions. In this review, we mainly focus on the coalescence of ceramic and metal materials for bulk construction. The basic knowledge of coalescent mechanism on inorganic materials is briefly introduced. IOX1 manufacturer Then, the properties of the inorganic precursors, which determine the coalescent behaviors of inorganic phases, are discussed from the views of particle interface, size, crystallinity, and orientation. The relationships between fundamental discoveries and industrial applications are emphasized. Based upon the understandings, the applications of inorganic bulk materials produced by the coalescence of their particle precursors are further presented. In conclusion, the challenges of particle coalescence for bulk material construction are presented, and the connection between recent fundamental findings and industrial applications is highlighted, aiming to provide an insightful outlook for the future development of functional inorganic materials.Most scholars maintain that quantum mechanics (QM) is a contextual theory and that quantum probability does not allow for an epistemic (ignorance) interpretation. By inquiring possible connections between contextuality and non-classical probabilities we show that a class TμMP of theories can be selected in which probabilities are introduced as classical averages of Kolmogorovian probabilities over sets of (microscopic) contexts, which endows them with an epistemic interpretation. The conditions characterizing TμMP are compatible with classical mechanics (CM), statistical mechanics (SM), and QM, hence we assume that these theories belong to TμMP. In the case of CM and SM, this assumption is irrelevant, as all of the notions introduced in them as members of TμMP reduce to standard notions. In the case of QM, it leads to interpret quantum probability as a derived notion in a Kolmogorovian framework, explains why it is non-Kolmogorovian, and provides it with an epistemic interpretation. These results were anticipated in a previous paper, but they are obtained here in a general framework without referring to individual objects, which shows that they hold, even if only a minimal (statistical) interpretation of QM is adopted in order to avoid the problems following from the standard quantum theory of measurement.In this paper we review the theoretical and practical principles of the broadcast approach to communication over state-dependent channels and networks in which the transmitters have access to only the probabilistic description of the time-varying states while remaining oblivious to their instantaneous realizations. When the temporal variations are frequent enough, an effective long-term strategy is adapting the transmission strategies to the system’s ergodic behavior. However, when the variations are infrequent, their temporal average can deviate significantly from the channel’s ergodic mode, rendering a lack of instantaneous performance guarantees. To circumvent a lack of short-term guarantees, the broadcast approach provides principles for designing transmission schemes that benefit from both short- and long-term performance guarantees. This paper provides an overview of how to apply the broadcast approach to various channels and network models under various operational constraints.It remains unclear whether the provision of additional physical activity in school improves academic outcomes. We conducted a secondary analysis of the Childhood Health, Activity, and Motor Performance School Study Denmark (CHAMPS-study DK), a natural experiment based on a trebling of curricular physical education, to investigate whether children receiving additional physical education performed better on their academic exams at the conclusion of compulsory education (i.e., 9th grade). Children from six intervention schools received 3-7 years of exposure to 270 weekly minutes of physical education (sports schools), while children from four control schools received the 90-min national standard (normal schools). Academic performance was based on the standard Danish 7-point scale (ranging from -03 to 12) and retrieved from national registries. The primary outcome was calculated as the average exam grade. Comparisons of participants at sports and normal schools were adjusted for individual socioeconomic factors and school-level academic environment. There were no differences in the pooled exam performance among 691 sports- and 510 normal-school participants (0.20 (95% confidence interval -0.12 to 0.52)). Results for subject-specific exams indicated similar results. This analysis from a non-randomized natural experiment did not provide evidence that simply adding additional physical education is sufficient to affect academic performance relative to the national standard.Although most prostate cancers are localized, and the majority are curable, recurrences occur in approximately 35% of men. Among patients with prostate-specific antigen (PSA) recurrence and PSA doubling time (PSADT) less than 15 months after radical prostatectomy, prostate cancer accounted for approximately 90% of the deaths by 15 years after recurrence. An immunosuppressive tumor microenvironment (TME) and impaired cellular immunity are likely largely responsible for the limited utility of checkpoint inhibitors (CPIs) in advanced prostate cancer compared with other tumor types. Thus, for immunologically “cold” malignancies such as prostate cancer, clinical trial development has pivoted towards novel approaches to enhance immune responses. Numerous clinical trials are currently evaluating combination immunomodulatory strategies incorporating vaccine-based therapies, checkpoint inhibitors, and chimeric antigen receptor (CAR) T cells. Other trials evaluate the efficacy and safety of these immunomodulatory agents’ combinations with standard approaches such as androgen deprivation therapy (ADT), taxane-based chemotherapy, radiotherapy, and targeted therapies such as tyrosine kinase inhibitors (TKI) and poly ADP ribose polymerase (PARP) inhibitors. Here, we will review promising immunotherapies in development and ongoing trials for metastatic castration-resistant prostate cancer (mCRPC). These novel trials will build on past experiences and promise to usher a new era to treat patients with mCRPC.